BibTex RIS Cite

-

Year 2015, Volume: 8 Issue: 1, 157 - 170, 31.01.2015

Abstract

Aim of this study is to investigate the appropriate distribution for VaR in the industrial metal market. Daily return data of copper and aluminium traded in London Metal Exchange are used for the period January 2003November 2013. VaR is calculated by the Variance-Covariance method with the symmetric and asymmetric GARCH models based on normal and GED distributions. Analysis results suggest that at 99% confidence levels, the models based on normal distribution have more accurate predictions of VaR for copper, while models based on each of the two distributions for aluminium have accurate predictions

References

  • Akan, B., Oktay, A. ve Tüzün, Y. (2003), “Parametrik Riske Maruz Değer Yöntemi ve Türkiye Uygulaması”, Bankacılar Dergisi, 14(45), 29-40.
  • Aksoy, G. ve Olgun, O. (2009), “Optimal Hedge Oranı Tahminlemesi Üzerine Amprik Bir Çalışma: VOB Örmeği”, İktisat, işletme ve Finans Dergisi, 24(274), 33-53.
  • Asteriou, D. ve Hall, S. (2007), “Applied Econometrics”, New York: Palgrave Macnillan.
  • Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31, 307–327.
  • Carter, R., William E. & Guay C. (2010), “Principles of Econometrics”, Danvers: John Wiley & Sons.
  • Cheng, W. H., Su, J. B., & Tzou, Y. P. (2009), “Value-at-Risk Forecasts in Gold Market Under Oil Shocks”, Middle Eastern Finance and Economics, 4, 48-64.
  • Cheng, W. H.ve Hung, J. C. (2011), “Skewness and Leptokurtosis in GARCH-typed VaR Estimation of Petroleum and Metal Asset Returns. Journal of Empirical Finance”, 18, 160– 173.
  • Christoffersen, P.F. (1998), “Evaluating Interval Forecasts”, International Economic Review, 39, 841–862.
  • Çifter, A., Özün, A., Yılmazer, S. (2007), “Beklenen Kuyruk Kaybı ve Genelleştirilmiş Pareto Dağılımı ile Riske Maruz Değer Öngörüsü: Faiz Oranları Üzerine Bir Uygulama”, Bankacılar Dergisi, 60, 1-16.
  • Enders, W. (2009), “Applied Econometric Times Series”, New Jersey: John Wiley & Sons
  • Engle, R., Lilien, D. M. ve Robins R. P. (1987), “Estimating time varying risk premia in the term structure: The ARCH-M model”, Econometrica, 55, 391–407.
  • Fan, Y., Zhang, Y. J., Tsai, H. T. ve Wei, Y. M. (2008), “Estimating Value at Risk of Crude Oil Price and its Spillover Effect Using The Ged-Garch Approach”., Energy Economics, 30, 3156–3171.
  • Füss, R., Adams Z., & Kaiser, D. G. (2008), “The Predictive Power of Value-At-Risk Models in Commodity Futures Markets”, Journal of Asset Management, 11, 261– 285 .
  • Giot, P. ve Laurent, S. (2003), “Market Risk in Commodity Markets: A VaR Approach” ,Energy Economics, 25, 435-457.
  • Glosten, L. R., Jaganathan, R. ve Runkle, D. E. (1993), “On The Relation Between The Expected Value and The Volatility of The Nominal Excess Return on Stocks”, J ournal of Finance, 48(5), 1779-1801.
  • Hammoudeha, S., Malikb, F., & McAleerc, M. (2011), “Risk Management of Precious Metals”, The Quarterly Review of Economics and Finance, 51(4), 435–441.
  • Hill, R. C., Griffiths, W. E. ve Lim, G. C. (2010), “Principles of Econometrics”, John Wiley & Sons .
  • Hung, J. C., Lee, M. C. Ve Liu, H. C. (2008), “Estimation of Value-at-Risk for Energy Commodities via Fat-Tailed Garch Model”, Energy Economics, 30, 1173-1191.
  • International Copper Study Group (2012), “The World Copper Factbook”, http://www.icsg.org/ (Erişim tarihi: 16.06.2013).
  • İstanbul Demir ve Demir Dışı Metaller İhracatçılar Birliği (2012), “2012 Çalışma Raporu”, http://www.immib.org.tr/files/iddmibcalismaraporu/iddmibcalismarapor u2012.pdf (Erişim tarihi: 20.03.2013).
  • Korkmaz, T. ve Bostancı, A. (2011), “RMD Hesaplamalarında Volatilite Tahminleme Modellerinin Karşılaştırılması ve Basel II Yaklaşımına Göre Geriye Dönük Test 100 Endeksi Uygulaması”, Business and Economics Research Journal, 2 (3), 1-17. Edilmesi: İMKB
  • Kupiec, P. (1995), “Techniques for Verifying The Accuracy of Risk Management Models”,
  • Journal of Derivatives, 3, 73–84.
  • Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New
  • Approach”, Econometrica, 59, 347-70.
  • Sadeghi, M. ve Shavvalpour, S. (2006), “Energy Risk Management and Value at Risk Modeling. Energy Policy”, 34, 3367–3373.
  • Sadorsky, P. (2006), “Modeling and Forecasting Petroleum Futures Volatility”, Energy
  • Economics, 28, 467–488.
  • Wang, Y. ve Wu, C. (2012), “Forecasting Energy Market Volatility Using Garch Models: 34(6), Can Multivariate Models Beat Univariate Models?”, Energy Economics, 2167–2181.
  • Zakoian, J.M. (1994), “Threshold Heteroskedastic Models”, Journal of Economic Dynamics and Control, 18, 931-55.

ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA

Year 2015, Volume: 8 Issue: 1, 157 - 170, 31.01.2015

Abstract

Bu çalışmanın amacı endüstriyel metal piyasasında öngörülecek VaR değerleri için uygun modelin ve dağılımın incelenmesidir. Çalışmada, Ocak 2003-Kasım 2013 dönemlerine ait Londra Metal Borsasında işlem gören bakır ve alüminyuma ilişkin günlük getiri serileri kullanılmıştır. VaR değerleri, normal ve GED dağılımına dayanan simetrik ve asimetrik GARCH modelli Varyans-Kovaryans yöntemi ile hesaplanmıştır. Analiz sonuçları, bakır serilerinde %99 güven düzeyinde normal dağılımının; alüminyum serilerinde ise her iki dağılımın da doğru VaR öngörülerinde bulunduğunu göstermiştir.

References

  • Akan, B., Oktay, A. ve Tüzün, Y. (2003), “Parametrik Riske Maruz Değer Yöntemi ve Türkiye Uygulaması”, Bankacılar Dergisi, 14(45), 29-40.
  • Aksoy, G. ve Olgun, O. (2009), “Optimal Hedge Oranı Tahminlemesi Üzerine Amprik Bir Çalışma: VOB Örmeği”, İktisat, işletme ve Finans Dergisi, 24(274), 33-53.
  • Asteriou, D. ve Hall, S. (2007), “Applied Econometrics”, New York: Palgrave Macnillan.
  • Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31, 307–327.
  • Carter, R., William E. & Guay C. (2010), “Principles of Econometrics”, Danvers: John Wiley & Sons.
  • Cheng, W. H., Su, J. B., & Tzou, Y. P. (2009), “Value-at-Risk Forecasts in Gold Market Under Oil Shocks”, Middle Eastern Finance and Economics, 4, 48-64.
  • Cheng, W. H.ve Hung, J. C. (2011), “Skewness and Leptokurtosis in GARCH-typed VaR Estimation of Petroleum and Metal Asset Returns. Journal of Empirical Finance”, 18, 160– 173.
  • Christoffersen, P.F. (1998), “Evaluating Interval Forecasts”, International Economic Review, 39, 841–862.
  • Çifter, A., Özün, A., Yılmazer, S. (2007), “Beklenen Kuyruk Kaybı ve Genelleştirilmiş Pareto Dağılımı ile Riske Maruz Değer Öngörüsü: Faiz Oranları Üzerine Bir Uygulama”, Bankacılar Dergisi, 60, 1-16.
  • Enders, W. (2009), “Applied Econometric Times Series”, New Jersey: John Wiley & Sons
  • Engle, R., Lilien, D. M. ve Robins R. P. (1987), “Estimating time varying risk premia in the term structure: The ARCH-M model”, Econometrica, 55, 391–407.
  • Fan, Y., Zhang, Y. J., Tsai, H. T. ve Wei, Y. M. (2008), “Estimating Value at Risk of Crude Oil Price and its Spillover Effect Using The Ged-Garch Approach”., Energy Economics, 30, 3156–3171.
  • Füss, R., Adams Z., & Kaiser, D. G. (2008), “The Predictive Power of Value-At-Risk Models in Commodity Futures Markets”, Journal of Asset Management, 11, 261– 285 .
  • Giot, P. ve Laurent, S. (2003), “Market Risk in Commodity Markets: A VaR Approach” ,Energy Economics, 25, 435-457.
  • Glosten, L. R., Jaganathan, R. ve Runkle, D. E. (1993), “On The Relation Between The Expected Value and The Volatility of The Nominal Excess Return on Stocks”, J ournal of Finance, 48(5), 1779-1801.
  • Hammoudeha, S., Malikb, F., & McAleerc, M. (2011), “Risk Management of Precious Metals”, The Quarterly Review of Economics and Finance, 51(4), 435–441.
  • Hill, R. C., Griffiths, W. E. ve Lim, G. C. (2010), “Principles of Econometrics”, John Wiley & Sons .
  • Hung, J. C., Lee, M. C. Ve Liu, H. C. (2008), “Estimation of Value-at-Risk for Energy Commodities via Fat-Tailed Garch Model”, Energy Economics, 30, 1173-1191.
  • International Copper Study Group (2012), “The World Copper Factbook”, http://www.icsg.org/ (Erişim tarihi: 16.06.2013).
  • İstanbul Demir ve Demir Dışı Metaller İhracatçılar Birliği (2012), “2012 Çalışma Raporu”, http://www.immib.org.tr/files/iddmibcalismaraporu/iddmibcalismarapor u2012.pdf (Erişim tarihi: 20.03.2013).
  • Korkmaz, T. ve Bostancı, A. (2011), “RMD Hesaplamalarında Volatilite Tahminleme Modellerinin Karşılaştırılması ve Basel II Yaklaşımına Göre Geriye Dönük Test 100 Endeksi Uygulaması”, Business and Economics Research Journal, 2 (3), 1-17. Edilmesi: İMKB
  • Kupiec, P. (1995), “Techniques for Verifying The Accuracy of Risk Management Models”,
  • Journal of Derivatives, 3, 73–84.
  • Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New
  • Approach”, Econometrica, 59, 347-70.
  • Sadeghi, M. ve Shavvalpour, S. (2006), “Energy Risk Management and Value at Risk Modeling. Energy Policy”, 34, 3367–3373.
  • Sadorsky, P. (2006), “Modeling and Forecasting Petroleum Futures Volatility”, Energy
  • Economics, 28, 467–488.
  • Wang, Y. ve Wu, C. (2012), “Forecasting Energy Market Volatility Using Garch Models: 34(6), Can Multivariate Models Beat Univariate Models?”, Energy Economics, 2167–2181.
  • Zakoian, J.M. (1994), “Threshold Heteroskedastic Models”, Journal of Economic Dynamics and Control, 18, 931-55.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Samet Evci

Serkan Kandır

Publication Date January 31, 2015
Published in Issue Year 2015 Volume: 8 Issue: 1

Cite

APA Evci, S., & Kandır, S. (2015). ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA. Niğde Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 8(1), 157-170.
AMA Evci S, Kandır S. ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. February 2015;8(1):157-170.
Chicago Evci, Samet, and Serkan Kandır. “ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA”. Niğde Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 8, no. 1 (February 2015): 157-70.
EndNote Evci S, Kandır S (February 1, 2015) ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 8 1 157–170.
IEEE S. Evci and S. Kandır, “ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA”, Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 8, no. 1, pp. 157–170, 2015.
ISNAD Evci, Samet - Kandır, Serkan. “ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA”. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 8/1 (February 2015), 157-170.
JAMA Evci S, Kandır S. ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2015;8:157–170.
MLA Evci, Samet and Serkan Kandır. “ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA”. Niğde Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, vol. 8, no. 1, 2015, pp. 157-70.
Vancouver Evci S, Kandır S. ENDÜSTRİYEL METAL PİYASASINDA PİYASA RİSKİNİN ÖLÇÜLMESİ: RİSKE MARUZ DEĞER (VaR) YÖNTEMİ İLE BİR UYGULAMA. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2015;8(1):157-70.