Research Article
BibTex RIS Cite

Soft b−compact spaces

Year 2016, Volume: 4 Issue: 2, 211 - 219, 01.03.2016

Abstract



In this paper, a new class of
generalized soft open sets in soft generalized topological spaces as a
generalization of compact spaces, called soft b-compact
spaces, is introduced and studied. A soft generalized topological space is soft
b-compact if every soft b-open soft cover of F
E contains a finite
soft subcover. We characterize soft b-compact space and study some of
their basic properties.




References

  • M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Computer and Mathematics with Applications,57, 1547-1553, (2009).
  • D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37(4/5) 19-31, (1999).
  • P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computer and Math. with Appl., 555-562, (2003).
  • M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl.,61, 1786-1799, (2011).
  • B. Chen, Soft semi-open sets and related properties in soft topological spaces, Applied Mathematics & Information Sciences, 7(1), 287-294, (2013).
  • M. Akdag and A. Ozkan, Soft a-open sets and soft a-continuous functions, Abstr. Anal. Appl. Art ID 891341, 1-7, (2014).
  • M. Akdag and A. Ozkan, Soft b-open sets and soft b-continuous functions, Math Sci 8:124 DOI 10.1007/s40096-014-0124-7, (2014).
  • S. Hussain and B. Ahmedi, Some properties of soft topological spaces, Neural Comput and Appl., 62, 4058-4067, (2011).
  • A. Aygunoglu and H.Aygun, Some notes on soft topological spaces, Neural Comput and Applic., Neural Comput. and Applic, 21(1), 113-119, (2012).
  • I. Arockiarani and A. A. Lancy, Generalized soft gb -closed sets and soft gsb -closed sets in soft topological spaces, International Journal Of Mathematical Archive, 4(2), 1-7, (2013).
  • I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2), 171-185, (2012).
  • S. M. Al-Salem, Soft regular generalized b-closed sets in soft topological spaces, Linear and Topological Algebra, 3(4), 195-204, (2014).
  • B. Ahmad and A. Kharal, On fuzzy soft sets, Advances in Fuzzy Systems, 1-6, (2009).
  • H. Aktas and N. Cagman, Soft sets and soft groups, Information Sciences, 1, 2726-2735, (2007).
  • N. Cagman, F.Itak and S. Enginoglu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1, 21-35,(2010).
  • N. Cagman and S. Enginoglu, Soft set theory and uniint decision making, European Journal of Operational Research, 207, 848-855, (2010).
  • D. V. Kovkov, V. M. Kolbanov and D. A. Molodtsov, Soft sets theory-based optimization, Journal of Computer and Systems Sciences International, 46, 872-880, (2007).
  • P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9, 589-602, (2001).
  • P. K. Maji, R. Biswas and A. R. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9, 677-691, (2001).
  • P. Majumdar and S. K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications, 59, 1425-1432, (2010).
  • D. Molodtsov, V. Y. Leonov and D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy iMyagkie Vychisleniya, 1, 8-39, (2006).
  • A. Mukherjee and S. B. Chakraborty, On intuitionistic fuzzy soft relations, Bulletin of Kerala Mathematics Association, 5, (2008), 35-42.
  • D. Pei and D. Miao, From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE, 2, 617-621, (2005).
  • Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21, 941-945, (2008).
Year 2016, Volume: 4 Issue: 2, 211 - 219, 01.03.2016

Abstract

References

  • M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Computer and Mathematics with Applications,57, 1547-1553, (2009).
  • D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37(4/5) 19-31, (1999).
  • P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computer and Math. with Appl., 555-562, (2003).
  • M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl.,61, 1786-1799, (2011).
  • B. Chen, Soft semi-open sets and related properties in soft topological spaces, Applied Mathematics & Information Sciences, 7(1), 287-294, (2013).
  • M. Akdag and A. Ozkan, Soft a-open sets and soft a-continuous functions, Abstr. Anal. Appl. Art ID 891341, 1-7, (2014).
  • M. Akdag and A. Ozkan, Soft b-open sets and soft b-continuous functions, Math Sci 8:124 DOI 10.1007/s40096-014-0124-7, (2014).
  • S. Hussain and B. Ahmedi, Some properties of soft topological spaces, Neural Comput and Appl., 62, 4058-4067, (2011).
  • A. Aygunoglu and H.Aygun, Some notes on soft topological spaces, Neural Comput and Applic., Neural Comput. and Applic, 21(1), 113-119, (2012).
  • I. Arockiarani and A. A. Lancy, Generalized soft gb -closed sets and soft gsb -closed sets in soft topological spaces, International Journal Of Mathematical Archive, 4(2), 1-7, (2013).
  • I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2), 171-185, (2012).
  • S. M. Al-Salem, Soft regular generalized b-closed sets in soft topological spaces, Linear and Topological Algebra, 3(4), 195-204, (2014).
  • B. Ahmad and A. Kharal, On fuzzy soft sets, Advances in Fuzzy Systems, 1-6, (2009).
  • H. Aktas and N. Cagman, Soft sets and soft groups, Information Sciences, 1, 2726-2735, (2007).
  • N. Cagman, F.Itak and S. Enginoglu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1, 21-35,(2010).
  • N. Cagman and S. Enginoglu, Soft set theory and uniint decision making, European Journal of Operational Research, 207, 848-855, (2010).
  • D. V. Kovkov, V. M. Kolbanov and D. A. Molodtsov, Soft sets theory-based optimization, Journal of Computer and Systems Sciences International, 46, 872-880, (2007).
  • P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9, 589-602, (2001).
  • P. K. Maji, R. Biswas and A. R. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9, 677-691, (2001).
  • P. Majumdar and S. K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications, 59, 1425-1432, (2010).
  • D. Molodtsov, V. Y. Leonov and D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy iMyagkie Vychisleniya, 1, 8-39, (2006).
  • A. Mukherjee and S. B. Chakraborty, On intuitionistic fuzzy soft relations, Bulletin of Kerala Mathematics Association, 5, (2008), 35-42.
  • D. Pei and D. Miao, From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE, 2, 617-621, (2005).
  • Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21, 941-945, (2008).
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Alkan Ozkan

Metin Akdag This is me

Fethullah Erol This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Ozkan, A., Akdag, M., & Erol, F. (2016). Soft b−compact spaces. New Trends in Mathematical Sciences, 4(2), 211-219.
AMA Ozkan A, Akdag M, Erol F. Soft b−compact spaces. New Trends in Mathematical Sciences. March 2016;4(2):211-219.
Chicago Ozkan, Alkan, Metin Akdag, and Fethullah Erol. “Soft b−compact Spaces”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 211-19.
EndNote Ozkan A, Akdag M, Erol F (March 1, 2016) Soft b−compact spaces. New Trends in Mathematical Sciences 4 2 211–219.
IEEE A. Ozkan, M. Akdag, and F. Erol, “Soft b−compact spaces”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 211–219, 2016.
ISNAD Ozkan, Alkan et al. “Soft b−compact Spaces”. New Trends in Mathematical Sciences 4/2 (March 2016), 211-219.
JAMA Ozkan A, Akdag M, Erol F. Soft b−compact spaces. New Trends in Mathematical Sciences. 2016;4:211–219.
MLA Ozkan, Alkan et al. “Soft b−compact Spaces”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 211-9.
Vancouver Ozkan A, Akdag M, Erol F. Soft b−compact spaces. New Trends in Mathematical Sciences. 2016;4(2):211-9.