Research Article
BibTex RIS Cite

Rational approximations for solving cauchy problems

Year 2016, Volume: 4 Issue: 3, 254 - 262, 30.09.2016

Abstract



In this letter, numerical solutions of Cauchy problems
are considered by multivariate Padé approximations (MPA). Multivariate Padé
approximations (MPA) were applied to power series solutions of Cauchy problems
that solved by using He’s variational iteration method (VIM). Then, numerical
results obtained by using multivariate Padé approximations were compared with
the exact solutions of Cauchy problems.




References

  • N. Guzel, M. Bayram, On the numerical solution of differential-algebraic equations with index-3, Applied Mathematics and Computation (2006), 175(2), 1320-1331. E. Celik, M. Bayram, http://www.sciencedirect.com/science/article/pii/S0096300303007197Numerical solution of differential–algebraic equation systems and applications, Applied Mathematics and Computation (2004), 154 ( 2): 405-413.
  • V. Turut and N Guzel., Comparing Numerical Methods for Solving Time- Fractional Reaction-Diffusion Equations, ISRN Mathematical Analysis (2012), Doi:10.5402/2012/737206.
  • V. Turut, N. Güzel, Multivariate padé approximation for solving partial differential equations of fractional order”,Abstract and Applied Analysis (2013), in press.
  • V. Turut, E. Çelik, M. Yiğider, Multivariate padé approximation for solving partial differential equations (PDE), International Journal For Numerical Methods In Fluids (2011), 66 (9):1159-1173. X. W. Zhou, L. Yao, http://www.sciencedirect.com/science/article/pii/S0898122110003718The variational iteration method for Cauchy problems, Computers & Mathematics with Applications (2010), 60 ( 3): 756-760. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng. (1998), 167: 57-68.
  • J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear. Mech. (1999), 34: 699-708. J.H. He, Variational iteration method-some recent results and new interpretations, J. Comput. Appl. Math. (2007), 207: 3-17. J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. (2007), 54: 881-894. J.H. He, G.-C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Sci. Lett. A (2010), 1: 1-30.
  • A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis, Elsevier Science Publishers B.V. (1987), Amsterdam Abdul-Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press (2009), Beijing G. Baker , P. Graves-Morris ,Padé Approximants. Basic Theory. Encyclopedia of Mathematics and its applications: vol 13., Addison- Wpsley, Reading (1981), Massachusetts.
  • A. Cuyt, A multivariate convergence theorem of the “de Montessus de Ballore” type, J. Comput. Appl. Math. (1990), 32: 47-57.
  • A. Cuyt, K. Driver and D.S. Lubinsky, Nuttall-Pommerenke theorem for homogeneous Padé approximants, J. Comput. Appl. Math. (1996), 67: 141-146. A. Cuyt, K. Driver and D.S. Lubinsky, A direct approach to convergence of multivariate, non-homogeneous, Padé approximants, J. Comput. Appl. Math. (1996), 69: 353-366.
  • C. Brezinski, Extrapolation algorithms and Padé approximations: a historical survey, Appl. Numer. Math. (1996), 20: 299-318.
Year 2016, Volume: 4 Issue: 3, 254 - 262, 30.09.2016

Abstract

References

  • N. Guzel, M. Bayram, On the numerical solution of differential-algebraic equations with index-3, Applied Mathematics and Computation (2006), 175(2), 1320-1331. E. Celik, M. Bayram, http://www.sciencedirect.com/science/article/pii/S0096300303007197Numerical solution of differential–algebraic equation systems and applications, Applied Mathematics and Computation (2004), 154 ( 2): 405-413.
  • V. Turut and N Guzel., Comparing Numerical Methods for Solving Time- Fractional Reaction-Diffusion Equations, ISRN Mathematical Analysis (2012), Doi:10.5402/2012/737206.
  • V. Turut, N. Güzel, Multivariate padé approximation for solving partial differential equations of fractional order”,Abstract and Applied Analysis (2013), in press.
  • V. Turut, E. Çelik, M. Yiğider, Multivariate padé approximation for solving partial differential equations (PDE), International Journal For Numerical Methods In Fluids (2011), 66 (9):1159-1173. X. W. Zhou, L. Yao, http://www.sciencedirect.com/science/article/pii/S0898122110003718The variational iteration method for Cauchy problems, Computers & Mathematics with Applications (2010), 60 ( 3): 756-760. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng. (1998), 167: 57-68.
  • J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear. Mech. (1999), 34: 699-708. J.H. He, Variational iteration method-some recent results and new interpretations, J. Comput. Appl. Math. (2007), 207: 3-17. J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. (2007), 54: 881-894. J.H. He, G.-C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Sci. Lett. A (2010), 1: 1-30.
  • A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis, Elsevier Science Publishers B.V. (1987), Amsterdam Abdul-Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press (2009), Beijing G. Baker , P. Graves-Morris ,Padé Approximants. Basic Theory. Encyclopedia of Mathematics and its applications: vol 13., Addison- Wpsley, Reading (1981), Massachusetts.
  • A. Cuyt, A multivariate convergence theorem of the “de Montessus de Ballore” type, J. Comput. Appl. Math. (1990), 32: 47-57.
  • A. Cuyt, K. Driver and D.S. Lubinsky, Nuttall-Pommerenke theorem for homogeneous Padé approximants, J. Comput. Appl. Math. (1996), 67: 141-146. A. Cuyt, K. Driver and D.S. Lubinsky, A direct approach to convergence of multivariate, non-homogeneous, Padé approximants, J. Comput. Appl. Math. (1996), 69: 353-366.
  • C. Brezinski, Extrapolation algorithms and Padé approximations: a historical survey, Appl. Numer. Math. (1996), 20: 299-318.
There are 9 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Veyis Turut

Mustafa Bayram

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 4 Issue: 3

Cite

APA Turut, V., & Bayram, M. (2016). Rational approximations for solving cauchy problems. New Trends in Mathematical Sciences, 4(3), 254-262.
AMA Turut V, Bayram M. Rational approximations for solving cauchy problems. New Trends in Mathematical Sciences. September 2016;4(3):254-262.
Chicago Turut, Veyis, and Mustafa Bayram. “Rational Approximations for Solving Cauchy Problems”. New Trends in Mathematical Sciences 4, no. 3 (September 2016): 254-62.
EndNote Turut V, Bayram M (September 1, 2016) Rational approximations for solving cauchy problems. New Trends in Mathematical Sciences 4 3 254–262.
IEEE V. Turut and M. Bayram, “Rational approximations for solving cauchy problems”, New Trends in Mathematical Sciences, vol. 4, no. 3, pp. 254–262, 2016.
ISNAD Turut, Veyis - Bayram, Mustafa. “Rational Approximations for Solving Cauchy Problems”. New Trends in Mathematical Sciences 4/3 (September 2016), 254-262.
JAMA Turut V, Bayram M. Rational approximations for solving cauchy problems. New Trends in Mathematical Sciences. 2016;4:254–262.
MLA Turut, Veyis and Mustafa Bayram. “Rational Approximations for Solving Cauchy Problems”. New Trends in Mathematical Sciences, vol. 4, no. 3, 2016, pp. 254-62.
Vancouver Turut V, Bayram M. Rational approximations for solving cauchy problems. New Trends in Mathematical Sciences. 2016;4(3):254-62.