Research Article
BibTex RIS Cite

Antimicrobial Activity of Metalic Nanoparticles: Their Implications For Multidrug Resistance Acinetobacter baumannii

Year 2021, Volume: 2 Issue: 2, 105 - 110, 15.09.2021

Abstract

Çoklu İlaç Direncine Sahip Acinetobacter baumanni’ye Karşı Metalik Nanopartiküllerin Antimikrobiyal Aktivitesi
Özet: Son yıllarda, birden çok ilaca direnç gösteren bakteriler ve bunların gösterdikleri direncin önlenmesi için kısıtlı antibiyotik onaylanması, var olan antibiyotiklerin bakteriyel enfeksiyonlarla tam olarak mücadele edememesi gibi sebeplerden ötürü, alternatif bileşiklerden biyositlere olan talebi artırdı. Kırmızı alarm patojeni olan A. baumnannii çoklu ilaç direnci ile bu talebi alevlendirdi. Metalik nanopartiküller (NP'ler), bakterilere karşı zar protein hasarı, süperoksit radikalleri ve yoğunlaşmış parçacıkların oluşumuna yol açan hücre granüllerine müdahale eden iyonların oluşumu yoluyla antimikrobiyal etki göstermektedirler. Bizde bu düşünce ile gümüş ve çinkooksit nanopartikülünün çoklu ilaç direncine sahip A. baumannni üzerine etkisini inceledik.
Materyal Metot:
Yoğun bakım ünitesinde tedavi gören bir hastanın kan örneği alınarak, Vitek II cihazına yerleştirildi. 48 saat sonra üreme olduğunu gösteren sinyal ile aldığımız örneğimizi %5 koyun kanlı agar ve McConkey agar besiyerlerine ekimleri yapıldı. Aerob şartlarda 37 °C’de inkübe edildi. Üreyen mikroorganizmanın makroskopik görünümleri, koloni ve gram boyama özelliklerine göre incelendi. Ayrıca etken moleküler yöntemle incelenerek çoklu ilaç direnç gen varlığı araştırıldı. Mikroorganizma konvansiyonel metodlarla identifiye edildi. Disk difüzyon yöntemi ve E-testler (bioMerieux; Durham, NC) ile anitibiyogram duyarlılıkları incelendi. Güncel Klinik ve Laboratuvar Standartları Enstitüsü (CLSI) kriterlerine göre yorumlandı.
Bulgular: A. baumnannii çoklu ilaç direncine sahip gen bölgesinin blaOXA-51 olduğu belirlendi. Çoklu ilaç direncine sahip A.baumannii yalnızca Ampicillın sulbactam (SAM) ve Getamycin(GN)' e karşı duyarlılık gösterdi Gümüş (AgNPs) ve Çinko oksit nanopartiküllerine (ZnONPs) karşı antimikrobiyal etkisi incelendi. (1.024-16 µg/disc) konsantrasyonunda hazırlanan nanomoleküllerden AgNPs ye karşı yalnızca 16 µg/disc konsantrasyonunda inhibisyon zonunun oluşmaması çok önem arz etmektedir. Çoklu ilaç direncine sahip bu izolatın eradikasyonunda yeni bir bileşik olarak düşünülebilir. ZnO-NPs nin etkisi ise, ≥ 1.024 µg/disc olarak belirlendi.
Sonuç:
Biyotıpta önemli uygulamaları olan NP'ler , gelecekte etkili antimikrobiyal ajanların geliştirilmesi için umut sağlamaktadır. Ancak, insan ve hayvan sağlığı üzerinde toksik etkilere sahip olduğu bilinen bir gerçektir. Bu etkileri azaltmak için en başta uzman otörler tarafından somut yöntemler geliştirilmelidir. Bunun dışında çevre dostu olan bu bileşiklerin doz ve süreleri ayaralandığı sürece başta A. baumannni olmak üzere çoklu ilac direncine sahip çoğu izolata karşı kullanılmak üzere geliştirilebilecek geniş spektrumlu antimikrobiyal partiküller sentezlenebilir.

References

  • REFERENCES 1. Sunenshine RH, Wright MO, Maragakis LL, Harris AD, Song X, Hebden J, Cosgrove SE, Anderson A, Carnell J, Jernigan DB, Kleinbaum DG, Perl TM, Standiford HC, Srinivasan A. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis. 2007;13(1):97–103.
  • 2. Playford EG, Craig JC, Iredell JR. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect. 2007;65(3):204–211
  • 3. Kwon KT, Oh WS, Song JH, Chang HH, Jung SI, Kim SW, Ryu SY, Heo ST, Jung DS, Rhee JY, Shin SY, Ko KS, Peck KR, Lee NY. Impact of imipenem resistance on mortality in patients with Acinetobacterbacteraemia. J Antimicrob Chemother. 2007;59(3):525–530.
  • 4. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–1281.
  • 5. Urban C, Meyer KS, Mariano N, Rahal JJ, Flamm R, Rasmussen BA, Bush K. Identification of TEM-26 beta-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994;38(2):392–395.
  • 6. Kohlenberg A, Brummer S, Higgins PG, Sohr D, Piening BC, de Grahl C, Halle E, Ruden H, Seifert H. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbiol. 2009;58(Pt 11):1499–1507.
  • 7. Fontana C, Favaro M, Minelli S, Bossa MC, Testore GP, Leonardis F, Natoli S, Favalli C. Acinetobacter baumannii in intensive care unit: a novel system to study clonal relationship among the isolates. BMC Infect Dis. 2008;8:79. 8.
  • 8. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):2941–2945.
  • 9. Heritier C, Dubouix A, Poirel L, Marty N, Nordmann P. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J Antimicrob Chemother. 2005;55(1):115–118.
  • 10. Maragakis LL, Cosgrove SE, Song X, Kim D, Rosenbaum P, Ciesla N, Srinivasan A, Ross T, Carroll K, Perl TM. An outbreak of multidrug-resistant Acinetobacter baumannii associated with pulsatile lavage wound treatment. JAMA. 2004;292(24):3006–3011.
  • 11. Melamed R, Greenberg D, Porat N, Karplus M, Zmora E, Golan A, Yagupsky P, Dagan R. Successful control of an Acinetobacter baumannii outbreak in a neonatal intensive care unit. J Hosp Infect. 2003;53(1):31–38.
  • 12. Maragakis LL, Tucker MG, Miller RG, Carroll KC, Perl TM. Incidence and prevalence of multidrug-resistant acinetobacter using targeted active surveillance cultures. JAMA. 2008;299(21):2513–2514.
  • 13. Hsueh P.R. New Delhi metallo-ss-lactamase-1 (NDM-1): An emerging threat among Enterobacteriaceae. J. Formos. Med. Assoc. 2010;109:685–687. doi: 10.1016/S0929-6646(10)60111-8.
  • 14. Jayaraman R. Antibiotic resistance: An overview of mechanisms and a paradigm shift. Curr. Sci. 2009;96:1475–1484.
  • 15. Shaikh S., Shakil S., Abuzenadah A.M., Rizvi S.M., Roberts P.M., Mushtaq G., Kamal M.A. Nanobiotechnological approaches against multidrug resistant bacterial pathogens: An update. Curr. Drug Metab. 2015;16:362–370.
  • 16. Ahmad K., Rabbani G., Baig M.H., Lim J.H., Khan M.E., Lee E.J., Ashraf G.M., Choi I. Nanoparticle-based drugs: A potential armamentarium of effective anti-cancer therapies. Curr. Drug Metab. 2018;19:839–846.
  • 17. Allahverdiyev A.M., Kon K.V., Abamor E.S., Bagirova M., Rafailovich M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti-Infect. Ther. 2011;9:1035–1052.
  • 18. Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008;42:4591–4602.
  • 19. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874.
  • 20. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces. 2010;79:5–18.
  • 21. Thom KA, Hsiao WW, Harris AD, Stine OC, Rasko DA, Johnson JK. Patients with Acinetobacter baumannii bloodstream infections are colonized in the gastrointestinal tract with identical strains. Am J Infect Control. 2010;38(9):751–753.
  • 22. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore D. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3.
  • 23. Durmaz R, Otlu B, Koksal F, Hosoglu S, Ozturk R, Ersoy Y, Aktas E, Gursoy NC, Caliskan A. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis. 2009;62(5):372–7
  • 24. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI; 2020
  • 25. Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, Thom KA, Snyder GM, Day HR, Perencevich EN. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol. 2010;31(7):716–721.
  • 26. Peleg, A. Y., Seifert, H., and Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582.
  • 27. Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem Rev. 1992;92(8):1709–1727
  • 28. Slavin Y.N., Asnis J., Hafeli U.O., Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65
  • 29. Shakibaie MR, Dhakephalkar PK, Kapadnis BP, et al. Plasmid mediated silver and antibiotic resistance in Acinetobacter baumannii BL54. Iran J Med Sci. 1998;23:30–36
  • 30. Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine. 2010;6(1):103–109.
  • 31. He W., Jia H., Cai J., Han X., Zheng Z., Wamer W.G., Yin J.-J. Production of reactive oxygen species and electrons from photoexcited ZnO and ZnS nanoparticles: A comparative study for unraveling their distinct photocatalytic activities. J. Phys. Chem. C. 2016;120:3187–3195.
  • 32. Sivakumar P., Lee M., Kim Y.-S., Shim M.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J. Mater. Chem. B. 2018;6:4852–4871.
  • 33. Navale G.R., Thripuranthaka M., Late D.J., Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol. Nanomed. 2015;3:1033.
  • 34. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331.
  • 35. Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Tapia J., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353
  • 36. Pérez-Díaz M.A., Boegli L., James G., Velasquillo C., Sánchez-Sánchez R., Martínez-Martínez R.E., Martínez-Castañón G.A., Martinez-Gutierrez F. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:360–366.
  • 37. Pereira L., Dias N., Carvalho J., Fernandes S., Santos C., Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol. 2014;117:1601–1613.
  • 38. Mallmann E.J.J., Cunha F.A., Castro B.N., Maciel A.M., Menezes E.A., Fechine P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. Sao. Paul. 2015;57:165–167.
  • 39. Ogar A., Tylko G., Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci. Total Environ. 2015;521:305–314.
  • 40. Panáček A., Kolář M., Večeřová R., Prucek R., Soukupová J., Kryštof V., Hamal P., Zbořil R., Kvítek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340.
  • 41. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331
  • 42. Tayel A.A., El-Tras W.F., Moussa S., El-Baz A.F., Mahrous H., Salem M.F., Brimer L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 2011;31:211–218.
  • 43. Liu Y., He L., Mustapha A., Li H., Hu ZQ., Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009;107:1193–1201
  • 44. Pati R., Mehta R.K., Mohanty S., Padhi A., Sengupta M., Vaseeharan B., Goswami C., Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed. Nanotech. Biol. Med. 2014;10:1195–1208
  • 45. Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90
  • 46. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331.
Year 2021, Volume: 2 Issue: 2, 105 - 110, 15.09.2021

Abstract

References

  • REFERENCES 1. Sunenshine RH, Wright MO, Maragakis LL, Harris AD, Song X, Hebden J, Cosgrove SE, Anderson A, Carnell J, Jernigan DB, Kleinbaum DG, Perl TM, Standiford HC, Srinivasan A. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis. 2007;13(1):97–103.
  • 2. Playford EG, Craig JC, Iredell JR. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect. 2007;65(3):204–211
  • 3. Kwon KT, Oh WS, Song JH, Chang HH, Jung SI, Kim SW, Ryu SY, Heo ST, Jung DS, Rhee JY, Shin SY, Ko KS, Peck KR, Lee NY. Impact of imipenem resistance on mortality in patients with Acinetobacterbacteraemia. J Antimicrob Chemother. 2007;59(3):525–530.
  • 4. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–1281.
  • 5. Urban C, Meyer KS, Mariano N, Rahal JJ, Flamm R, Rasmussen BA, Bush K. Identification of TEM-26 beta-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994;38(2):392–395.
  • 6. Kohlenberg A, Brummer S, Higgins PG, Sohr D, Piening BC, de Grahl C, Halle E, Ruden H, Seifert H. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbiol. 2009;58(Pt 11):1499–1507.
  • 7. Fontana C, Favaro M, Minelli S, Bossa MC, Testore GP, Leonardis F, Natoli S, Favalli C. Acinetobacter baumannii in intensive care unit: a novel system to study clonal relationship among the isolates. BMC Infect Dis. 2008;8:79. 8.
  • 8. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):2941–2945.
  • 9. Heritier C, Dubouix A, Poirel L, Marty N, Nordmann P. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J Antimicrob Chemother. 2005;55(1):115–118.
  • 10. Maragakis LL, Cosgrove SE, Song X, Kim D, Rosenbaum P, Ciesla N, Srinivasan A, Ross T, Carroll K, Perl TM. An outbreak of multidrug-resistant Acinetobacter baumannii associated with pulsatile lavage wound treatment. JAMA. 2004;292(24):3006–3011.
  • 11. Melamed R, Greenberg D, Porat N, Karplus M, Zmora E, Golan A, Yagupsky P, Dagan R. Successful control of an Acinetobacter baumannii outbreak in a neonatal intensive care unit. J Hosp Infect. 2003;53(1):31–38.
  • 12. Maragakis LL, Tucker MG, Miller RG, Carroll KC, Perl TM. Incidence and prevalence of multidrug-resistant acinetobacter using targeted active surveillance cultures. JAMA. 2008;299(21):2513–2514.
  • 13. Hsueh P.R. New Delhi metallo-ss-lactamase-1 (NDM-1): An emerging threat among Enterobacteriaceae. J. Formos. Med. Assoc. 2010;109:685–687. doi: 10.1016/S0929-6646(10)60111-8.
  • 14. Jayaraman R. Antibiotic resistance: An overview of mechanisms and a paradigm shift. Curr. Sci. 2009;96:1475–1484.
  • 15. Shaikh S., Shakil S., Abuzenadah A.M., Rizvi S.M., Roberts P.M., Mushtaq G., Kamal M.A. Nanobiotechnological approaches against multidrug resistant bacterial pathogens: An update. Curr. Drug Metab. 2015;16:362–370.
  • 16. Ahmad K., Rabbani G., Baig M.H., Lim J.H., Khan M.E., Lee E.J., Ashraf G.M., Choi I. Nanoparticle-based drugs: A potential armamentarium of effective anti-cancer therapies. Curr. Drug Metab. 2018;19:839–846.
  • 17. Allahverdiyev A.M., Kon K.V., Abamor E.S., Bagirova M., Rafailovich M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti-Infect. Ther. 2011;9:1035–1052.
  • 18. Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008;42:4591–4602.
  • 19. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874.
  • 20. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces. 2010;79:5–18.
  • 21. Thom KA, Hsiao WW, Harris AD, Stine OC, Rasko DA, Johnson JK. Patients with Acinetobacter baumannii bloodstream infections are colonized in the gastrointestinal tract with identical strains. Am J Infect Control. 2010;38(9):751–753.
  • 22. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore D. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3.
  • 23. Durmaz R, Otlu B, Koksal F, Hosoglu S, Ozturk R, Ersoy Y, Aktas E, Gursoy NC, Caliskan A. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis. 2009;62(5):372–7
  • 24. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI; 2020
  • 25. Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, Thom KA, Snyder GM, Day HR, Perencevich EN. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol. 2010;31(7):716–721.
  • 26. Peleg, A. Y., Seifert, H., and Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582.
  • 27. Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem Rev. 1992;92(8):1709–1727
  • 28. Slavin Y.N., Asnis J., Hafeli U.O., Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65
  • 29. Shakibaie MR, Dhakephalkar PK, Kapadnis BP, et al. Plasmid mediated silver and antibiotic resistance in Acinetobacter baumannii BL54. Iran J Med Sci. 1998;23:30–36
  • 30. Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine. 2010;6(1):103–109.
  • 31. He W., Jia H., Cai J., Han X., Zheng Z., Wamer W.G., Yin J.-J. Production of reactive oxygen species and electrons from photoexcited ZnO and ZnS nanoparticles: A comparative study for unraveling their distinct photocatalytic activities. J. Phys. Chem. C. 2016;120:3187–3195.
  • 32. Sivakumar P., Lee M., Kim Y.-S., Shim M.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J. Mater. Chem. B. 2018;6:4852–4871.
  • 33. Navale G.R., Thripuranthaka M., Late D.J., Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol. Nanomed. 2015;3:1033.
  • 34. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331.
  • 35. Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Tapia J., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353
  • 36. Pérez-Díaz M.A., Boegli L., James G., Velasquillo C., Sánchez-Sánchez R., Martínez-Martínez R.E., Martínez-Castañón G.A., Martinez-Gutierrez F. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:360–366.
  • 37. Pereira L., Dias N., Carvalho J., Fernandes S., Santos C., Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol. 2014;117:1601–1613.
  • 38. Mallmann E.J.J., Cunha F.A., Castro B.N., Maciel A.M., Menezes E.A., Fechine P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. Sao. Paul. 2015;57:165–167.
  • 39. Ogar A., Tylko G., Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci. Total Environ. 2015;521:305–314.
  • 40. Panáček A., Kolář M., Večeřová R., Prucek R., Soukupová J., Kryštof V., Hamal P., Zbořil R., Kvítek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340.
  • 41. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331
  • 42. Tayel A.A., El-Tras W.F., Moussa S., El-Baz A.F., Mahrous H., Salem M.F., Brimer L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 2011;31:211–218.
  • 43. Liu Y., He L., Mustapha A., Li H., Hu ZQ., Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009;107:1193–1201
  • 44. Pati R., Mehta R.K., Mohanty S., Padhi A., Sengupta M., Vaseeharan B., Goswami C., Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed. Nanotech. Biol. Med. 2014;10:1195–1208
  • 45. Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90
  • 46. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331.
There are 46 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Demet Çelebi 0000-0002-2355-0561

Özgür Çelebi 0000-0003-4578-9474

Publication Date September 15, 2021
Submission Date April 2, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

EndNote Çelebi D, Çelebi Ö (September 1, 2021) Antimicrobial Activity of Metalic Nanoparticles: Their Implications For Multidrug Resistance Acinetobacter baumannii. New Trends in Medicine Sciences 2 2 105–110.