Research Article
BibTex RIS Cite

Life cycle assessment (LCA) of nanocellulose composite panels (NCPs) manufactured using freeze-drying technique

Year 2018, Volume: 5 Issue: 1, 56 - 63, 22.03.2018
https://doi.org/10.17568/ogmoad.391400

Abstract











The life cycle assessment (LCA) is a powerful technique to investigate the environmental impacts of current and new products and production processes. In this research, the LCA of nanocellulose composite panels (NCPs) produced using freeze-drying techniques were studied. The environmental effects of the final product and the production method were reported. The nanocellulose is a bio-based raw material that can be obtained from a variety of natural sources and used in building, construction, packaging, pharmaceutical, and insulation industry. The wood-based cellulose nanofibrils (CNF) produced using mechanical grinding, and the industrial corn-starch (Ethylex 2025) were used as raw materials in this study. The n-Dodecenyl Succinic Anhydride (DDSA) and boric acid (BA - ((B(OH)3) - 99.94 % pure) were used as treatment materials. As a result of this explanatory research, the cellulose nanofibrils (CNFs) produced using mechanical process were found environmentally friendly as expected. The production process, freeze-drying technique, was not found eco-friendly in laboratory scale. However, using solar energy in full-scale production can decrease the energy consumption up to 76% and would make the process eco-friendlier. The nanocellulose composite panels (NCPs) can be produced using the freeze-drying technique. The findings of this study showed that freeze-drying technique would be feasible and nature-friendly in full-scale production using renewable energy sources.

References

  • J.A. Fava and A. Page (1992). Application of Product Life-cycle Assessment to Product Stewardship and Pollution Prevention Programs. Water Science and Technology, 26; 275-287. J. Alongi and G. Malucelli (2015). Cotton Flame Reatrdancy: state of the art and future perspectives. 5; 24239-24263.
  • J. L. Chin, O. Heidrich and A. P. Roskilly (2016). Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 59; 352-378.
  • I. S. Bayer, D. Fragouli, A. Attanasio, B. Sorce, G. Bertoni, R. Brescia, R. D. Corato, T. Pellegrino, M. Kalyva, S. Sabella, P. P. Pompa,R. Cingolani, and A. Athanassiou (2011). Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Appl. Mater. Interfaces. 3; 4024-4031.
  • ISO. (2006). Environmental management - life-cycle assessment - requirements and guidelines. ISO 14044. International Organization for Standardization, Geneva, Switzerland, pp. 46 pp.
  • Kristin Aasestad (2008), The Norwegian Emission Inventory Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants.
  • L. Qarout (2017). Reducing the Environmental Impacts of Building Materials: Embodied Energy Analysis of a High- performance Building. Ph.D. Thesis. The University of Wisconsin.
  • M. E. Puettmann, R. Bergman, S. Hubbard, L. Johnson, B. Lippke, E. Oneiland F. G. Wagner (2009). Cradle-To-Gate Life-Cycle Inventory of Us Wood Products Production: Corrim Phase I And Phase Ii Products. Wood and Fiber Science, 42; 15-28.
  • M. Puettmann (2000). Environmental LCA of Preservative Treated Southern Yellow Pine Lumber with Borate Wood Preservative. MSc. Thesis. The University of Minnesota.
  • M. Puettmann, E. Oneil and R. Bergman (2012). Cradle to Gate Life Cycle Assessment of Softwood Lumber Production from the Northeast-North Central. Technical Report.
  • M. Puettmann, R. Bergman and E. Oneil (2016). Cradle to Gate Life Cycle Assessment of North American Cellulosic Fiberboard Production. Technical Report.
  • AF&PA (2010) -American Forest & Paper Association. http://www.afandpa.org.
  • M. Puettmann, R. Bergman and E. Oneil (2016). Cradle to Gate Life Cycle Assessment of North American Hardboard and Engineered Wood Siding and Trim Production. Technical Report prepared for Composiste Panel Association (CPA).
  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2010) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–3944.
  • N. Lavoine, I. Desloges, A. Dufresne and J. Bras (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers. 90; 735-764.
  • NREL. (2012) U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory.https://www.lcacommons.gov/nrel/search.
  • N. Yildirim, S. M. Shaler, D. J. Gardner, R. Rice, D. W. Bousfield (2014). Cellulose nanofibrils (CNFs) Reinforced Starch İnsulating Foams. Cellulose. 21;4337-4347.
  • PreConsultants. (2012). SimaPro 8.0+ Life-cycle assessment software package. https://www.pre-sustainability.com/simapro.
  • Salminen (2012). Hydrophobic microfibrous cellulose and method of producing the same. Patent : WO 2012089929 A1.
  • Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara and Kiyoto Tanabe (2006). IPCC Guidelines for National Greenhouse Gas Inventories Institute for Global Environmental Strategies (IGES), Hayama, Japan.
  • A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury (2005). Developments in flame retardant textiles e a review. Polymer Degradation and Stability. 88; 3-12.
  • Bare, J. (2011). TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy, 5; 687-696.
  • B. E. Dale (2003). ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. J Chem Technol Biotechnol. 78; 1093-1103.
  • Dunn, JB., F. Adom, J. Han, and S. Snyder (2015). Life Cycle Analysis Of Bioproducts And Their Conventional Counterparts In GREET. GREET (2016) v1.3.0.13081. September 2015. Production of Succinic Acid 95 pp. https://greet.es.anl.gov/.
  • EIA-U.S. Energy Information Administration. Maine State Profile (2014). http://www.eia.gov/state/print.cfm?sid=me.
  • Frischknecht R., Jungbluth N. (2003). Implementation of Life Cycle Impact Assessment Methods. Cumulative Energy Demand (CED), Ecoinvent version 2.0.
  • https://www.usgbc.org/articles/building-green-energyefficient-materials-insulation.
  • https://new.usgbc.org/leed.

Dondurarak-kurutma yöntemi ile üretilmiş nanoselüloz kompozit panellerin yaşam döngüsü değerlendirmesi (YDD)

Year 2018, Volume: 5 Issue: 1, 56 - 63, 22.03.2018
https://doi.org/10.17568/ogmoad.391400

Abstract











Yaşam döngüsü değerlendirme (YDD) yöntemi malzemelerin çevreye etkilerini incelemekte etkin bir araçtır. Bu çalışmada, dondurarak-kurutma yöntemi ile üretilmiş nanoselüloz kompozit panellerin (NKP) YDD’leri incelenmiştir. Son ürün ve üretim aşamalarının çevreye etkileri belirlenmiş ve raporlanmıştır. Nanoselüloz, biyo bazlı çevreye zararı olmayan ve doğada birçok kaynaktan elde edilebilen, ambalajlama, inşaat, yapı ve benzeri endüstrilerde kullanılan doğal bir polimerdir. Bu çalışmada mekaniksel yöntemlerle odun malzemeden üretilmiş selüloz nanolifler (SNL), endüstriyel mısır nişastası (MN), Dodecenyl Succinic Anhydride (DDSA) ve borik asit (BA - ((B(OH)3) - % 99.94 saflık) kullanılmıştır. Araştırmaya dayalı bu çalışmanın sonucunda, odun malzemeden üretilmiş selüloz nanolifler kullanılarak üretilen malzemelerin beklendiği gibi çevreci malzemeler olduğu belirlenmiştir. Dondurarak-kurutma yönteminin ise laboratuar ölçeğinde kullanımı çevreci bulunmamıştır. Yapılan ek incelemeler ve araştırmalar; tam ölçekli üretimde, yenilenebilir enerji kaynaklarının kullanılması durumunda % 76’lık bir iyileştirme olabileceğini göstermiştir. Selüloz nanolif bazlı kompozit malzemelerin dondurarak-kurutma yöntemi ile üretilmesi; tam ölçekli üretim kullanılması ve de yenilenebilir enerji kaynaklarının kullanılması durumunda çevreci bulunmuştur.

References

  • J.A. Fava and A. Page (1992). Application of Product Life-cycle Assessment to Product Stewardship and Pollution Prevention Programs. Water Science and Technology, 26; 275-287. J. Alongi and G. Malucelli (2015). Cotton Flame Reatrdancy: state of the art and future perspectives. 5; 24239-24263.
  • J. L. Chin, O. Heidrich and A. P. Roskilly (2016). Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 59; 352-378.
  • I. S. Bayer, D. Fragouli, A. Attanasio, B. Sorce, G. Bertoni, R. Brescia, R. D. Corato, T. Pellegrino, M. Kalyva, S. Sabella, P. P. Pompa,R. Cingolani, and A. Athanassiou (2011). Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Appl. Mater. Interfaces. 3; 4024-4031.
  • ISO. (2006). Environmental management - life-cycle assessment - requirements and guidelines. ISO 14044. International Organization for Standardization, Geneva, Switzerland, pp. 46 pp.
  • Kristin Aasestad (2008), The Norwegian Emission Inventory Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants.
  • L. Qarout (2017). Reducing the Environmental Impacts of Building Materials: Embodied Energy Analysis of a High- performance Building. Ph.D. Thesis. The University of Wisconsin.
  • M. E. Puettmann, R. Bergman, S. Hubbard, L. Johnson, B. Lippke, E. Oneiland F. G. Wagner (2009). Cradle-To-Gate Life-Cycle Inventory of Us Wood Products Production: Corrim Phase I And Phase Ii Products. Wood and Fiber Science, 42; 15-28.
  • M. Puettmann (2000). Environmental LCA of Preservative Treated Southern Yellow Pine Lumber with Borate Wood Preservative. MSc. Thesis. The University of Minnesota.
  • M. Puettmann, E. Oneil and R. Bergman (2012). Cradle to Gate Life Cycle Assessment of Softwood Lumber Production from the Northeast-North Central. Technical Report.
  • M. Puettmann, R. Bergman and E. Oneil (2016). Cradle to Gate Life Cycle Assessment of North American Cellulosic Fiberboard Production. Technical Report.
  • AF&PA (2010) -American Forest & Paper Association. http://www.afandpa.org.
  • M. Puettmann, R. Bergman and E. Oneil (2016). Cradle to Gate Life Cycle Assessment of North American Hardboard and Engineered Wood Siding and Trim Production. Technical Report prepared for Composiste Panel Association (CPA).
  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2010) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–3944.
  • N. Lavoine, I. Desloges, A. Dufresne and J. Bras (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers. 90; 735-764.
  • NREL. (2012) U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory.https://www.lcacommons.gov/nrel/search.
  • N. Yildirim, S. M. Shaler, D. J. Gardner, R. Rice, D. W. Bousfield (2014). Cellulose nanofibrils (CNFs) Reinforced Starch İnsulating Foams. Cellulose. 21;4337-4347.
  • PreConsultants. (2012). SimaPro 8.0+ Life-cycle assessment software package. https://www.pre-sustainability.com/simapro.
  • Salminen (2012). Hydrophobic microfibrous cellulose and method of producing the same. Patent : WO 2012089929 A1.
  • Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara and Kiyoto Tanabe (2006). IPCC Guidelines for National Greenhouse Gas Inventories Institute for Global Environmental Strategies (IGES), Hayama, Japan.
  • A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury (2005). Developments in flame retardant textiles e a review. Polymer Degradation and Stability. 88; 3-12.
  • Bare, J. (2011). TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy, 5; 687-696.
  • B. E. Dale (2003). ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. J Chem Technol Biotechnol. 78; 1093-1103.
  • Dunn, JB., F. Adom, J. Han, and S. Snyder (2015). Life Cycle Analysis Of Bioproducts And Their Conventional Counterparts In GREET. GREET (2016) v1.3.0.13081. September 2015. Production of Succinic Acid 95 pp. https://greet.es.anl.gov/.
  • EIA-U.S. Energy Information Administration. Maine State Profile (2014). http://www.eia.gov/state/print.cfm?sid=me.
  • Frischknecht R., Jungbluth N. (2003). Implementation of Life Cycle Impact Assessment Methods. Cumulative Energy Demand (CED), Ecoinvent version 2.0.
  • https://www.usgbc.org/articles/building-green-energyefficient-materials-insulation.
  • https://new.usgbc.org/leed.
There are 27 citations in total.

Details

Primary Language English
Journal Section Forest Products
Authors

Nadir Yıldırım 0000-0003-2751-9593

Publication Date March 22, 2018
Submission Date February 7, 2018
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

APA Yıldırım, N. (2018). Life cycle assessment (LCA) of nanocellulose composite panels (NCPs) manufactured using freeze-drying technique. Ormancılık Araştırma Dergisi, 5(1), 56-63. https://doi.org/10.17568/ogmoad.391400
Creative Commons License
Turkish Journal of Forestry Research is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.