Research Article
BibTex RIS Cite

Polivinil klorür (PVC)’ün geri dönüştürülmesi: PVC köpük üretimi ve Karakterizasyonu

Year 2022, Volume: 9 Issue: Özel Sayı, 336 - 341, 17.09.2022
https://doi.org/10.17568/ogmoad.1095629

Abstract

Plastikler hayatımızın birçok alanında yıllardır kullanılmakta olup kullanım ömrü sonunda önemli miktarda atık oluşturmaktadır. Doğada uzun yıllar bozunmadan kalan ve çevreye zarar veren bu malzemelerin geri dönüştürülüp tekrar kullanıma kazandırılması önem taşımaktadır. Termoplastik köpük malzemeler düşük yoğunluk, yüksek spesifik mukavemet, yüksek enerji absorblama özellikleri ve üstün yalıtım özelliklerinden dolayı ısı yalıtımı, otomotiv koltukları, ambalaj malzemeleri ve enerji absorblayıcı (soğurucu) malzemeler olarak yaygın bir şekilde kullanılmaktadır. Bu çalışmada, en çok kullanılan plastiklerden biri olan ve önemli miktarda atık oluşturan polivinil klorür (PVC)’ün geri dönüşüm yoluyla termoplastik köpük malzemelerin üretiminde kullanımı amaçlanmıştır. Bu amaçla kapı ve pencere profil atıklarından elde edilen atık PVC kullanılarak termoplastik köpük malzemeler üretilmiştir. PVC köpük malzemelerin bazı fiziksel, mekanik ve morfolojik özellikleri üzerine kimyasal köpük oluşturucu miktarının etkisi incelenmiştir. Üretilen PVC köpük malzemelerde kimyasal köpük oluşturucu malzeme miktarının artması ile PVC köpüklerin yoğunluk değerlerinde %40’lara kadar bir azalma sağlanmıştır. PVC köpüklerin spesifik darbe direnci değerleri kimyasal köpük oluşturucu miktarı ile doğrusal bir şekilde artış göstermiştir. Köpüklerin hücre yapısı incelendiğinde ise kimyasal köpük oluşturucu miktarının artması ile hücre birleşmelerinin meydana geldiği ve daha büyük hücrelerin oluştuğu gözlemlenmiştir.

Supporting Institution

YÖK, TÜBİTAK (KAROK2021)

Project Number

YÖK 100/2000, TÜBİTAK BİDEB 2211-C

Thanks

Bu çalışma “Sürdürülebilir yapı malzemeleri ve teknolojileri” konulu YÖK 100/2000 doktora bursu ve “Yalıtım malzemesi olarak atık polivinil klorür (PVC) kullanılarak kompozit köpük üretimi ve özellikleri” başlıklı TÜBİTAK 2211-C Yurtiçi öncelikli alanlar doktora bursu kapsamında desteklenmiştir.

References

  • Abu-Zahra, N. H., & Alian, A. M., 2010. Density and cell morphology of rigid foam PVC-clay nanocomposites. Polymer-Plastics Technology and Engineering, 49 (3): 237-243.
  • ASTM D256, 2010. Standard test for determining the Izod pendulum impact resistance of plastics. ASTM International.
  • ASTM D618, 2013. Standard practice for conditioning plastics for testing. ASTM International.
  • ASTM D792, 2013. Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International.
  • Augier, L., Sperone, G., Vaca-Garcia, C., & Borredon, M. E., 2007. Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polymer Degradation and Stability, 92 (7): 1169-1176.
  • Demir, H., Sipahioğlu, M., Balköse, D., & Ülkü, S., 2008. Effect of additives on flexible PVC foam formation. Journal of materials processing technology, 195 (1-3): 144-153.
  • Eaves, D., 2001. Polymer Foams: Trends in Use and Technology. Rapra Technology Limited, pp. 111-113.
  • Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., & Ghasemi, I., 2011. Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources, 6 (1): 841-852.
  • Fried, J. R., 2014. Polymer Science and Technology. Pearson Education, pp. 273-371.
  • Ghasemi, I., Farsheh, A. T., & Masoomi, Z., 2012. Effects of multi‐walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly (vinyl chloride)/(wood flour)/(multi‐walled carbon nanotubes). Journal of Vinyl and Additive Technology, 18 (3): 161-167.
  • Gohatre, O. K., Biswal, M., Mohanty, S., & Nayak, S. K., 2021. An effective sustainable approach towards recycling and value addition of waste poly (vinyl chloride) and acrylonitrile butadiene styrene (ABS) recovered from electronic waste (e-waste). Journal of Polymer Research, 28 (9): 1-16.
  • Matuana, L. M., Park, C. B., & Balatinecz, J. J., 1998. Cell morphology and property relationships of microcellular foamed PVC/wood‐fiber composites. Polymer Engineering & Science, 38 (11): 1862-1872.
  • Mengeloglu, F., & Matuana, L. M., 2001. Foaming of rigid PVC/wood‐flour composites through a continuous extrusion process. Journal of Vinyl and Additive Technology, 7 (3): 142-148.
  • Mengeloglu, F., & Matuana, L. M., 2003. Mechanical properties of extrusion‐foamed rigid PVC/wood‐flour composites. Journal of Vinyl and Additive Technology, 9 (1): 26-31.
  • Nawaby, A. V., & Zhang, Z., 2004. Solubility and diffusivity. Thermoplastic Foam Processing: Principles and Development, pp. 1-42.
  • Petchwattana, N., & Covavisaruch, S., 2011. Influences of modified chemical blowing agents on foaming of wood plastic composites prepared from poly (vinyl chloride) and rice hull. In Advanced Materials Research (Vol. 306, pp. 869-873). Trans Tech Publications Ltd.
  • Rigamonti, L., Grosso, M., Møller, J., Sanchez, V. M., Magnani, S., & Christensen, T. H., 2014. Environmental evaluation of plastic waste management scenarios. Resources, Conservation and Recycling, 85: 42-53.
  • Shakarami, K., Doniavi, A., Azdast, T., & Aghdam, K. M., 2013. Microcellular foaming of PVC/NBR thermoplastic elastomer. Materials and manufacturing processes, 28 (8): 872-878.
  • Titow, W. V., 2012. PVC plastics: properties, processing, and applications. Springer Science & Business Media, pp. 10-16.
  • Vachon, C., & Gendron, R., 2005. Research on alternative blowing agents. Thermoplastic Foam Processing: Principles and Development, 139-191.
  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S., 2016. Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences, 35: 701-708.
  • Zhang, J. P., Zhang, C. C., & Zhang, F. S., 2021. A novel process for waste polyvinyl chloride recycling: Plant growth substrate development. Journal of Environmental Chemical Engineering, 9 (4): 105475.
  • Zheng, Y., Yanful, E. K., & Bassi, A. S., 2005. A review of plastic waste biodegradation. Critical reviews in biotechnology, 25 (4): 243-250.

Recycling of polyvinyl chloride (PVC): production and characterization of PVC foams

Year 2022, Volume: 9 Issue: Özel Sayı, 336 - 341, 17.09.2022
https://doi.org/10.17568/ogmoad.1095629

Abstract

Plastics have been used in many areas of our daily lives for years generating large amount of post-consumption wastes. It is important to recycle and reuse of these materials since they remain without degrading for many years causing harm to the environment. Thermoplastic foams are widely used as thermal insulation, automotive seating, packaging, furniture and energy absorbing materials due to their low density, high strength/weight ratio, high energy absorption performance and superior insulation properties. In this study, potential usage of polyvinyl chloride (PVC), one of the most used plastics, in the manufacture of PVC foams were aimed. For this purpose, thermoplastic foam materials were produced by using waste PVC obtained from door and window profile wastes. The effect of chemical foaming agent amount on the some physical, mechanical and morphology properties of PVC foams were investigated. According to the obtained results, the use of foaming agent provided up to 40% reduction in the density of PVC foams. With chemical foaming agent amount were increased specific impact strength values of PVC foams. Cell structure of foams was also investigated and an increase in cell coalescence with the increase of chemical foaming agents was observed.

Project Number

YÖK 100/2000, TÜBİTAK BİDEB 2211-C

References

  • Abu-Zahra, N. H., & Alian, A. M., 2010. Density and cell morphology of rigid foam PVC-clay nanocomposites. Polymer-Plastics Technology and Engineering, 49 (3): 237-243.
  • ASTM D256, 2010. Standard test for determining the Izod pendulum impact resistance of plastics. ASTM International.
  • ASTM D618, 2013. Standard practice for conditioning plastics for testing. ASTM International.
  • ASTM D792, 2013. Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International.
  • Augier, L., Sperone, G., Vaca-Garcia, C., & Borredon, M. E., 2007. Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polymer Degradation and Stability, 92 (7): 1169-1176.
  • Demir, H., Sipahioğlu, M., Balköse, D., & Ülkü, S., 2008. Effect of additives on flexible PVC foam formation. Journal of materials processing technology, 195 (1-3): 144-153.
  • Eaves, D., 2001. Polymer Foams: Trends in Use and Technology. Rapra Technology Limited, pp. 111-113.
  • Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., & Ghasemi, I., 2011. Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources, 6 (1): 841-852.
  • Fried, J. R., 2014. Polymer Science and Technology. Pearson Education, pp. 273-371.
  • Ghasemi, I., Farsheh, A. T., & Masoomi, Z., 2012. Effects of multi‐walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly (vinyl chloride)/(wood flour)/(multi‐walled carbon nanotubes). Journal of Vinyl and Additive Technology, 18 (3): 161-167.
  • Gohatre, O. K., Biswal, M., Mohanty, S., & Nayak, S. K., 2021. An effective sustainable approach towards recycling and value addition of waste poly (vinyl chloride) and acrylonitrile butadiene styrene (ABS) recovered from electronic waste (e-waste). Journal of Polymer Research, 28 (9): 1-16.
  • Matuana, L. M., Park, C. B., & Balatinecz, J. J., 1998. Cell morphology and property relationships of microcellular foamed PVC/wood‐fiber composites. Polymer Engineering & Science, 38 (11): 1862-1872.
  • Mengeloglu, F., & Matuana, L. M., 2001. Foaming of rigid PVC/wood‐flour composites through a continuous extrusion process. Journal of Vinyl and Additive Technology, 7 (3): 142-148.
  • Mengeloglu, F., & Matuana, L. M., 2003. Mechanical properties of extrusion‐foamed rigid PVC/wood‐flour composites. Journal of Vinyl and Additive Technology, 9 (1): 26-31.
  • Nawaby, A. V., & Zhang, Z., 2004. Solubility and diffusivity. Thermoplastic Foam Processing: Principles and Development, pp. 1-42.
  • Petchwattana, N., & Covavisaruch, S., 2011. Influences of modified chemical blowing agents on foaming of wood plastic composites prepared from poly (vinyl chloride) and rice hull. In Advanced Materials Research (Vol. 306, pp. 869-873). Trans Tech Publications Ltd.
  • Rigamonti, L., Grosso, M., Møller, J., Sanchez, V. M., Magnani, S., & Christensen, T. H., 2014. Environmental evaluation of plastic waste management scenarios. Resources, Conservation and Recycling, 85: 42-53.
  • Shakarami, K., Doniavi, A., Azdast, T., & Aghdam, K. M., 2013. Microcellular foaming of PVC/NBR thermoplastic elastomer. Materials and manufacturing processes, 28 (8): 872-878.
  • Titow, W. V., 2012. PVC plastics: properties, processing, and applications. Springer Science & Business Media, pp. 10-16.
  • Vachon, C., & Gendron, R., 2005. Research on alternative blowing agents. Thermoplastic Foam Processing: Principles and Development, 139-191.
  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S., 2016. Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences, 35: 701-708.
  • Zhang, J. P., Zhang, C. C., & Zhang, F. S., 2021. A novel process for waste polyvinyl chloride recycling: Plant growth substrate development. Journal of Environmental Chemical Engineering, 9 (4): 105475.
  • Zheng, Y., Yanful, E. K., & Bassi, A. S., 2005. A review of plastic waste biodegradation. Critical reviews in biotechnology, 25 (4): 243-250.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Forest Products
Authors

Yıldız Birbilen 0000-0002-6432-0367

Kadir Karakus 0000-0001-7088-4364

Fatih Mengeloğlu 0000-0002-2614-3662

Project Number YÖK 100/2000, TÜBİTAK BİDEB 2211-C
Early Pub Date August 31, 2022
Publication Date September 17, 2022
Submission Date March 30, 2022
Published in Issue Year 2022 Volume: 9 Issue: Özel Sayı

Cite

APA Birbilen, Y., Karakus, K., & Mengeloğlu, F. (2022). Polivinil klorür (PVC)’ün geri dönüştürülmesi: PVC köpük üretimi ve Karakterizasyonu. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 336-341. https://doi.org/10.17568/ogmoad.1095629
Creative Commons License
Turkish Journal of Forestry Research is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.