Research Article
BibTex RIS Cite

EVALUATION OF DIFFERENT GROUP DECISIONS FOR THE STUDENT-PROJECT ALLOCATION PROBLEM

Year 2023, , 544 - 557, 29.04.2023
https://doi.org/10.31796/ogummf.1145417

Abstract

In general, Student-Project Allocation (SPA) might be defined as a multi-criteria problem of formation of student-project groups and allocation of projects to these groups by considering different criteria. In this study, an approach including three phases is proposed for the solution of the problem. In the first phase, student-project groups are formed using a mathematical programming model adapted from a 0-1 integer-goal programming formulation in the literature. These criteria are (i) the number of students in a group, (ii) grade points average (GPA) value, (iii) language, (iv) computer programming, (v) general office software and (vi) database management skills. In the next phase, before performing group-project matchings, group decisions of the formed-groups for their project preferences are determined representing different point of views the group members. Finally, group-project allocations are performed via a 0-1 integer program using the corresponding group decisions. The contribution of the study may be summarized as solving the problem using the proposed three-phase approach by taking into account group decisions. Thus, the preferences of many students with different perspectives can be considered as an unbiased and single group decision for the preference criterion, which is an important criterion in the SPA process.

References

  • Abraham, D.J., Irving, R.W. & Manlove, D.F. (2007). Two algorithms for the student-project allocation problem. Journal of Discrete Algorithms, 5(1), 73-90. doi: https://doi.org/10.1016/j.jda.2006.03.006
  • Aderanti, F.A., Amosa, R.T. & Oluwatobiloba, A.A. (2016). Development of student project allocation system using matching algorithm. International Conference of Science, Engineering and Environmental Technology (ICONSEET), 1(22), 153-160, Nigeria.
  • Agustin-Blas, L.E., Salcedo-Sanz, S., Ortiz-Garcia, E.G., Portilla-Figueras, A. & Perez-Bellido, A.M. (2009). A hybrid grouping genetic algorithm for assigning students to preferred laboratory groups. Expert Systems with Applications, 36(3), 7234-7241. doi: https://doi.org/10.1016/j.eswa.2008.09.020
  • Alberola, J.M., Val, E.D., Sanchez-Anguix, V. & Julian, V. (2016). A general framework for testing different student team formation strategies. Methodologies and Intelligent Systems for Technology Enhanced Learning: 6th International Conference, 23-31, Sevilla, Spain. doi: https://doi.org/10.1007/978-3-319-40165-2_3
  • Anwar, A.A. & Bahaj, A.S. (2003). Student project allocation using integer programming. IEEE Transactions on Education, 46(3), 359-367. doi: https://doi.org/10.1109/te.2003.811038
  • Baglarbasi-Mutlu, M., Sebatli, A. & Cavdur, F. (2018). Group decision making for criteria importance determination in student project team formation problems. NCM Conferences International Conference on New Challenges in Industrial Engineering and Operations Management, 141, Ankara, Türkiye.
  • Banaeian, N., Mobli, H., Fahimnia, B., Nielsen, E. & Omid, M. (2018). Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Computers and Operations Research, 89, 337-347. doi: https://doi.org/10.1016/j.cor.2016.02.015
  • Binong, J. (2021). Solving student project allocation with preference through weights. International Conference on Frontiers in Computing and Systems, 423-430, Shillong, India. doi: https://doi.org/10.1007/978-981-15-7834-2_40
  • Borges, J., Dias, T.G. & Cunha, J.F.E. (2009). A new group-formation method for student projects. European Journal of Engineering Education, 34(6), 573-585. doi: https://doi.org/10.1080/03043790903202967
  • Calvo-Serrano, R., Guillen-Gosalbez, G., Kohn, S. & Masters, A. (2017). Mathematical programming approach for optimally allocating students' projects to academics in large cohorts. Education for Chemical Engineers, 20, 11-21. doi: https://doi.org/10.1016/j.ece.2017.06.002
  • Cavdur, F. (2018). Research Data. Erişim adresi: http://fatihcavdur.home.uludag.edu.tr/data.php
  • Cavdur, F., Sebatli, A., Kose-Kucuk, M. & Rodoplu, C. (2019). A two-phase binary-goal programming-based approach for optimal project-team formation. Journal of the Operational Research Society, 70(4), 689-706. doi: https://doi.org/10.1080/01605682.2018.1457480
  • Chiarandini, M., Fagerberg, R. & Gualandi, S. (2019). Handling preferences in student-project allocation. Annals of Operations Research, 275(1), 39-78. doi: https://doi.org/10.1007/s10479-017-2710-1
  • Chown, A.H., Cook, C.J. & Wilding, N.B. (2018). A simulated annealing approach to the student-project allocation problem. American Journal of Physics, 86(9), 701-708. doi: https://doi.org/10.1119/1.5045331
  • Cooper, F. & Manlove, D. (2018). A 3/2-approximation algorithm for the student-project allocation problem. 17th International Symposium on Experimental Algorithms, 103, 8:1-8:13, L'Aquila, Italy.
  • Cutshall, R., Gavirneni, S. & Schultz, K. (2007). Indiana University’s Kelley School of Business uses integer programming to form equitable, cohesive student teams. Interfaces, 37(3), 265-276. doi: https://doi.org/10.1287/inte.1060.0248
  • Çalı, S. & Balaman Ş.Y. (2019). A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment. Expert Systems with Applications, 119, 36-50. doi: https://doi.org/10.1016/j.eswa.2018.10.039
  • Çavdur, F., Bağlarbaşı-Mutlu, M. ve Sebatlı-Sağlam, A. (2020). Öğrenci-proje takımı oluşturma problemi için bir karar destek sistemi uygulaması. Bursa Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 485-500. doi: https://doi.org/10.17482/uumfd.537826
  • Çavdur, F., Sebatlı, A. & Köse-Küçük, M. (2019). A group-decision making and goal programming-based solution approach for the student-project team formation problem. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 505-521. doi: https://doi.org/10.17341/gazimmfd.416511
  • Daş, G.S., Altınkaynak, B., Göçken, T. & Türker, A.K. (2022). A set partitioning based goal programming model for the team formation problem. International Transactions in Operational Research, 29(1), 301-322. doi: https://doi.org/10.1111/itor.13022
  • Dong, Q., Zhou, X. & Martinez, L. (2019). A hybrid group decision making framework for achieving agreed solutions based on stable opinions. Information Sciences, 490, 227-243. doi: https://doi.org/10.1016/j.ins.2019.03.044
  • Dye, J. (2001). A constraint logic programming approach to the stable marriage problem and its application to student-project allocation. (Lisans tezi). University of York, Department of Computer Science, York, UK.
  • Fitzpatrick, E., Askin, R. & Goldberg, J. (2001). Using student conative behaviors and technical skills to form effective project teams. 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education, 3, S2G, 8-13, Reno, NV, USA. doi: https://doi.org/10.1109/fie.2001.964039
  • Harper, P.R., de Senna, V., Vieira, I.T. & Shahani, A.K. (2005). A genetic algorithm for the project assignment problem. Computers and Operations Research, 32(5), 1255-1265. doi: https://doi.org/10.1016/j.cor.2003.11.003
  • Hübscher, R. (2010). Assigning students to groups using general and context-specific criteria. IEEE Transactions on Learning Technologies, 3(3), 178-189. doi: https://doi.org/10.1109/tlt.2010.17
  • Ismaili, A., Yamaguchi, T. & Yokoo, M. (2018). Student-project-resource allocation: Complexity of the symmetric case. PRIMA 2018: Principles and Practice of Multi-Agent Systems, 226-241, Tokyo, Japan. doi: https://doi.org/10.1007/978-3-030-03098-8_14
  • Iwama, K., Miyazaki, S. & Yanagisawa, H. (2012). Improved approximation bounds for the student-project allocation problem with preferences over projects. Journal of Discrete Algorithms, 13, 59-66. doi: https://doi.org/10.1016/j.jda.2012.02.001
  • Kao, C. & Liu, S.T. (2022). Group decision making in data envelopment analysis: A robot selection application. European Journal of Operational Research, 297(2), 592-599. doi: https://doi.org/10.1016/j.ejor.2021.05.013
  • Kenekayoro, P. & Fawei, B. (2020). Meta-heuristic solutions to a student grouping optimization problem faced in higher education institutions. Journal of Advances in Mathematics and Computer Science, 35(7). 61-74. doi: https://doi.org/10.9734/jamcs/2020/v35i730304
  • Koksalmis, E. & Kabak, Ö. (2019). Deriving decision makers’ weights in group decision making: An overview of objective methods. Information Fusion, 49, 146-160. doi: https://doi.org/10.1016/j.inffus.2018.11.009
  • Maashi, M.S., Almanea, G., Alqurashi, R., Alharbi, N., Alharkan, R. & Alsadhan, F. (2020). Solving student-project research assignment problems using a novel greedy linear heuristic algorithm: A case study at King Saud University, Riyadh Saudi Arabia. Bioscience Biotechnology Research Communications, 13(3), 1168-1173. doi: https://doi.org/10.21786/bbrc/13.3/27
  • Manlove, D., Milne, D. & Olaosebikan, S. (2018). An integer programming approach to the student-project allocation problem with preferences over projects. International Symposium on Combinatorial Optimization, 313-325, Marrakesh, Morocco. doi: https://doi.org/10.1007/978-3-319-96151-4_27
  • Manlove, D., Milne, D. & Olaosebikan, S. (2022). Student-project allocation with preferences over projects: Algorithmic and experimental results. Discrete Applied Mathematics, 308, 220-234. doi: https://doi.org/10.1016/j.dam.2020.08.015
  • Manlove, D.F. & O'Malley, G. (2008). Student-project allocation with preferences over projects. Journal of Discrete Algorithms, 6(4), 553-560. doi: https://doi.org/10.1016/j.jda.2008.07.003
  • Olaosebikan, S. & Manlove, D. (2020a). Super-stability in the student-project allocation problem with ties. Journal of Combinatorial Optimization, 1-37. doi: https://doi.org/10.1007/s10878-020-00632-x
  • Olaosebikan, S. & Manlove, D. (2020b). An algorithm for strong stability in the student-project allocation problem with ties. Conference on Algorithms and Discrete Applied Mathematics, 384-399, Hyderabad, India. doi: https://doi.org/10.1007/978-3-030-39219-2_31
  • Pan, L., Chu, S.C., Han, G. & Huang, J. Z. (2009). Multi-criteria student project allocation: A case study of goal programming formulation with DSS implementation. The Eighth International Symposium on Operations Research and Its Applications (ISORA’09), 75-82, Zhangjiajie, China.
  • Proll, L.G. (1972). A simple method of assigning projects to students. Journal of the Operational Research Society, 23(2), 195-201. doi: https://doi.org/10.2307/3008267
  • Sahin, Y.G. (2011). A team building model for software engineering courses term projects. Computers and Education, 56(3), 916-922. doi: https://doi.org/10.1016/j.compedu.2010.11.006
  • Samanlioglu, F., Taskaya, Y.E., Gulen, U.C. & Cokcan, O. (2018). A fuzzy AHP–TOPSIS-based group decision-making approach to IT personnel selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi: https://doi.org/10.1007/s40815-018-0474-7
  • Saraç, T. ve Özçelik, F. (2013). Ders proje gruplarının oluşturulması için bir matematiksel model. Journal of Industrial Engineering (Turkish Chamber of Mechanical Engineers), 24(1-2), 2-11.
  • Tang, M., Liao, H., Xu, J., Streimikiene, D. & Zheng, X. (2020). Adaptive consensus reaching process with hybrid strategies for large-scale group decision making. European Journal of Operational Research, 282(3), 957-971. doi: https://doi.org/10.1016/j.ejor.2019.10.006
  • Viet, H.H., Van Tan, L. & Cao, S.T. (2020). Finding Maximum Stable Matchings for the Student-Project Allocation Problem with Preferences Over Projects. FDSE2020: Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, Communications in Computer and Information Science, 411-422, Quy Nhon, Vietnam. doi: https://doi.org/10.1007/978-981-33-4370-2_29
  • Wu, Z., Ahmad, J. & Xu, J. (2016). A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Applied Soft Computing, 42, 314-324. doi: https://doi.org/10.1016/j.asoc.2016.02.007
  • Yahiro, K. & Yokoo, M. (2020). Game theoretic analysis for two-sided matching with resource allocation. Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems, 1548-1556, Auckland, New Zealand.
  • Yu, C., Shao, Y., Wang, K. & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with Applications, 121, 1-17. doi: https://doi.org/10.1016/j.eswa.2018.12.010
  • Zhang, B., Dong, Y. & Herrera-Viedma, E. (2019) Group decision making with heterogeneous preference structures: An automatic mechanism to support consensus reaching. Group Decision and Negotiation, 28(3), 585-617. doi: https://doi.org/10.1007/s10726-018-09609-y
  • Zhang, Z., Gao, Y. & Li, Z. (2020). Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowledge-Based Systems, 204, 106240. doi: https://doi.org/10.1016/j.knosys.2020.106240

ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ

Year 2023, , 544 - 557, 29.04.2023
https://doi.org/10.31796/ogummf.1145417

Abstract

Öğrenci-Proje Atama (ÖPA), genel olarak, çeşitli kriterlerin dikkate alınmasıyla öğrenci-proje gruplarının oluşturmasını ve bu gruplara projelerin atanmasını içeren çok-kriterli bir problem olarak tanımlanabilir. Bu çalışmada, problemin çözümü için üç aşamadan oluşan bir yaklaşım önerilmektedir. Yakın tarihli başka bir çalışmada geliştirilmiş olan bir 0-1 tamsayılı-hedef programlama formülasyonundan adapte edilmiş olan matematiksel programlama modeliyle, çalışmanın ilk aşamasında çeşitli kriterler dikkate alınarak öğrenci-proje gruplarının oluşturulması gerçekleştirilmektedir. Söz konusu kriterler ise (i) bir gruptaki öğrenci sayısı, (ii) genel akademik not ortalaması (GANO) değeri, (iii) yabancı dil, (iv) bilgisayar programlama, (v) genel ofis yazılımları ve (vi) veri tabanı yönetimi yetenekleridir. Sonraki aşamada, grup-proje eşleştirmeleri gerçekleştirilmeden önce, oluşturulan grupların proje tercihleri için grup üyelerinin farklı bakış açılarını yansıtan grup kararları belirlenmektedir. Son olarak, öğrenci-proje gruplarının proje tercihlerine yönelik olarak oluşturulan grup kararları kullanılarak bir 0-1 tamsayılı program ile grup-proje atamaları gerçekleştirilmektedir. Çalışmanın literatüre olan katkısı, önerilen üç aşamalı yaklaşımla, grup kararlarının dikkate alınarak ÖPA probleminin çözülmesi şeklinde özetlenebilir. Böylelikle, farklı bakış açılarına sahip çok sayıdaki öğrencinin tercihleri, ÖPA sürecinde önemli bir kriter olan tercih kriteri için yansız ve tek bir grup kararı olarak ele alınabilmektedir. Önerilen yaklaşım, akademik bir kurumdaki gerçek bir ÖPA problemine uygulanmıştır. Elde edilen sonuçlar, ilgili literatürde bulunan diğer atama yaklaşımlarının sonuçları ile çeşitli performans parametreleri açısından karşılaştırılmıştır ve kriterlerin performans skorlarında ortalama %9 oranında iyileşme olduğu gözlenmiştir.

References

  • Abraham, D.J., Irving, R.W. & Manlove, D.F. (2007). Two algorithms for the student-project allocation problem. Journal of Discrete Algorithms, 5(1), 73-90. doi: https://doi.org/10.1016/j.jda.2006.03.006
  • Aderanti, F.A., Amosa, R.T. & Oluwatobiloba, A.A. (2016). Development of student project allocation system using matching algorithm. International Conference of Science, Engineering and Environmental Technology (ICONSEET), 1(22), 153-160, Nigeria.
  • Agustin-Blas, L.E., Salcedo-Sanz, S., Ortiz-Garcia, E.G., Portilla-Figueras, A. & Perez-Bellido, A.M. (2009). A hybrid grouping genetic algorithm for assigning students to preferred laboratory groups. Expert Systems with Applications, 36(3), 7234-7241. doi: https://doi.org/10.1016/j.eswa.2008.09.020
  • Alberola, J.M., Val, E.D., Sanchez-Anguix, V. & Julian, V. (2016). A general framework for testing different student team formation strategies. Methodologies and Intelligent Systems for Technology Enhanced Learning: 6th International Conference, 23-31, Sevilla, Spain. doi: https://doi.org/10.1007/978-3-319-40165-2_3
  • Anwar, A.A. & Bahaj, A.S. (2003). Student project allocation using integer programming. IEEE Transactions on Education, 46(3), 359-367. doi: https://doi.org/10.1109/te.2003.811038
  • Baglarbasi-Mutlu, M., Sebatli, A. & Cavdur, F. (2018). Group decision making for criteria importance determination in student project team formation problems. NCM Conferences International Conference on New Challenges in Industrial Engineering and Operations Management, 141, Ankara, Türkiye.
  • Banaeian, N., Mobli, H., Fahimnia, B., Nielsen, E. & Omid, M. (2018). Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Computers and Operations Research, 89, 337-347. doi: https://doi.org/10.1016/j.cor.2016.02.015
  • Binong, J. (2021). Solving student project allocation with preference through weights. International Conference on Frontiers in Computing and Systems, 423-430, Shillong, India. doi: https://doi.org/10.1007/978-981-15-7834-2_40
  • Borges, J., Dias, T.G. & Cunha, J.F.E. (2009). A new group-formation method for student projects. European Journal of Engineering Education, 34(6), 573-585. doi: https://doi.org/10.1080/03043790903202967
  • Calvo-Serrano, R., Guillen-Gosalbez, G., Kohn, S. & Masters, A. (2017). Mathematical programming approach for optimally allocating students' projects to academics in large cohorts. Education for Chemical Engineers, 20, 11-21. doi: https://doi.org/10.1016/j.ece.2017.06.002
  • Cavdur, F. (2018). Research Data. Erişim adresi: http://fatihcavdur.home.uludag.edu.tr/data.php
  • Cavdur, F., Sebatli, A., Kose-Kucuk, M. & Rodoplu, C. (2019). A two-phase binary-goal programming-based approach for optimal project-team formation. Journal of the Operational Research Society, 70(4), 689-706. doi: https://doi.org/10.1080/01605682.2018.1457480
  • Chiarandini, M., Fagerberg, R. & Gualandi, S. (2019). Handling preferences in student-project allocation. Annals of Operations Research, 275(1), 39-78. doi: https://doi.org/10.1007/s10479-017-2710-1
  • Chown, A.H., Cook, C.J. & Wilding, N.B. (2018). A simulated annealing approach to the student-project allocation problem. American Journal of Physics, 86(9), 701-708. doi: https://doi.org/10.1119/1.5045331
  • Cooper, F. & Manlove, D. (2018). A 3/2-approximation algorithm for the student-project allocation problem. 17th International Symposium on Experimental Algorithms, 103, 8:1-8:13, L'Aquila, Italy.
  • Cutshall, R., Gavirneni, S. & Schultz, K. (2007). Indiana University’s Kelley School of Business uses integer programming to form equitable, cohesive student teams. Interfaces, 37(3), 265-276. doi: https://doi.org/10.1287/inte.1060.0248
  • Çalı, S. & Balaman Ş.Y. (2019). A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment. Expert Systems with Applications, 119, 36-50. doi: https://doi.org/10.1016/j.eswa.2018.10.039
  • Çavdur, F., Bağlarbaşı-Mutlu, M. ve Sebatlı-Sağlam, A. (2020). Öğrenci-proje takımı oluşturma problemi için bir karar destek sistemi uygulaması. Bursa Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 485-500. doi: https://doi.org/10.17482/uumfd.537826
  • Çavdur, F., Sebatlı, A. & Köse-Küçük, M. (2019). A group-decision making and goal programming-based solution approach for the student-project team formation problem. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 505-521. doi: https://doi.org/10.17341/gazimmfd.416511
  • Daş, G.S., Altınkaynak, B., Göçken, T. & Türker, A.K. (2022). A set partitioning based goal programming model for the team formation problem. International Transactions in Operational Research, 29(1), 301-322. doi: https://doi.org/10.1111/itor.13022
  • Dong, Q., Zhou, X. & Martinez, L. (2019). A hybrid group decision making framework for achieving agreed solutions based on stable opinions. Information Sciences, 490, 227-243. doi: https://doi.org/10.1016/j.ins.2019.03.044
  • Dye, J. (2001). A constraint logic programming approach to the stable marriage problem and its application to student-project allocation. (Lisans tezi). University of York, Department of Computer Science, York, UK.
  • Fitzpatrick, E., Askin, R. & Goldberg, J. (2001). Using student conative behaviors and technical skills to form effective project teams. 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education, 3, S2G, 8-13, Reno, NV, USA. doi: https://doi.org/10.1109/fie.2001.964039
  • Harper, P.R., de Senna, V., Vieira, I.T. & Shahani, A.K. (2005). A genetic algorithm for the project assignment problem. Computers and Operations Research, 32(5), 1255-1265. doi: https://doi.org/10.1016/j.cor.2003.11.003
  • Hübscher, R. (2010). Assigning students to groups using general and context-specific criteria. IEEE Transactions on Learning Technologies, 3(3), 178-189. doi: https://doi.org/10.1109/tlt.2010.17
  • Ismaili, A., Yamaguchi, T. & Yokoo, M. (2018). Student-project-resource allocation: Complexity of the symmetric case. PRIMA 2018: Principles and Practice of Multi-Agent Systems, 226-241, Tokyo, Japan. doi: https://doi.org/10.1007/978-3-030-03098-8_14
  • Iwama, K., Miyazaki, S. & Yanagisawa, H. (2012). Improved approximation bounds for the student-project allocation problem with preferences over projects. Journal of Discrete Algorithms, 13, 59-66. doi: https://doi.org/10.1016/j.jda.2012.02.001
  • Kao, C. & Liu, S.T. (2022). Group decision making in data envelopment analysis: A robot selection application. European Journal of Operational Research, 297(2), 592-599. doi: https://doi.org/10.1016/j.ejor.2021.05.013
  • Kenekayoro, P. & Fawei, B. (2020). Meta-heuristic solutions to a student grouping optimization problem faced in higher education institutions. Journal of Advances in Mathematics and Computer Science, 35(7). 61-74. doi: https://doi.org/10.9734/jamcs/2020/v35i730304
  • Koksalmis, E. & Kabak, Ö. (2019). Deriving decision makers’ weights in group decision making: An overview of objective methods. Information Fusion, 49, 146-160. doi: https://doi.org/10.1016/j.inffus.2018.11.009
  • Maashi, M.S., Almanea, G., Alqurashi, R., Alharbi, N., Alharkan, R. & Alsadhan, F. (2020). Solving student-project research assignment problems using a novel greedy linear heuristic algorithm: A case study at King Saud University, Riyadh Saudi Arabia. Bioscience Biotechnology Research Communications, 13(3), 1168-1173. doi: https://doi.org/10.21786/bbrc/13.3/27
  • Manlove, D., Milne, D. & Olaosebikan, S. (2018). An integer programming approach to the student-project allocation problem with preferences over projects. International Symposium on Combinatorial Optimization, 313-325, Marrakesh, Morocco. doi: https://doi.org/10.1007/978-3-319-96151-4_27
  • Manlove, D., Milne, D. & Olaosebikan, S. (2022). Student-project allocation with preferences over projects: Algorithmic and experimental results. Discrete Applied Mathematics, 308, 220-234. doi: https://doi.org/10.1016/j.dam.2020.08.015
  • Manlove, D.F. & O'Malley, G. (2008). Student-project allocation with preferences over projects. Journal of Discrete Algorithms, 6(4), 553-560. doi: https://doi.org/10.1016/j.jda.2008.07.003
  • Olaosebikan, S. & Manlove, D. (2020a). Super-stability in the student-project allocation problem with ties. Journal of Combinatorial Optimization, 1-37. doi: https://doi.org/10.1007/s10878-020-00632-x
  • Olaosebikan, S. & Manlove, D. (2020b). An algorithm for strong stability in the student-project allocation problem with ties. Conference on Algorithms and Discrete Applied Mathematics, 384-399, Hyderabad, India. doi: https://doi.org/10.1007/978-3-030-39219-2_31
  • Pan, L., Chu, S.C., Han, G. & Huang, J. Z. (2009). Multi-criteria student project allocation: A case study of goal programming formulation with DSS implementation. The Eighth International Symposium on Operations Research and Its Applications (ISORA’09), 75-82, Zhangjiajie, China.
  • Proll, L.G. (1972). A simple method of assigning projects to students. Journal of the Operational Research Society, 23(2), 195-201. doi: https://doi.org/10.2307/3008267
  • Sahin, Y.G. (2011). A team building model for software engineering courses term projects. Computers and Education, 56(3), 916-922. doi: https://doi.org/10.1016/j.compedu.2010.11.006
  • Samanlioglu, F., Taskaya, Y.E., Gulen, U.C. & Cokcan, O. (2018). A fuzzy AHP–TOPSIS-based group decision-making approach to IT personnel selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi: https://doi.org/10.1007/s40815-018-0474-7
  • Saraç, T. ve Özçelik, F. (2013). Ders proje gruplarının oluşturulması için bir matematiksel model. Journal of Industrial Engineering (Turkish Chamber of Mechanical Engineers), 24(1-2), 2-11.
  • Tang, M., Liao, H., Xu, J., Streimikiene, D. & Zheng, X. (2020). Adaptive consensus reaching process with hybrid strategies for large-scale group decision making. European Journal of Operational Research, 282(3), 957-971. doi: https://doi.org/10.1016/j.ejor.2019.10.006
  • Viet, H.H., Van Tan, L. & Cao, S.T. (2020). Finding Maximum Stable Matchings for the Student-Project Allocation Problem with Preferences Over Projects. FDSE2020: Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, Communications in Computer and Information Science, 411-422, Quy Nhon, Vietnam. doi: https://doi.org/10.1007/978-981-33-4370-2_29
  • Wu, Z., Ahmad, J. & Xu, J. (2016). A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Applied Soft Computing, 42, 314-324. doi: https://doi.org/10.1016/j.asoc.2016.02.007
  • Yahiro, K. & Yokoo, M. (2020). Game theoretic analysis for two-sided matching with resource allocation. Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems, 1548-1556, Auckland, New Zealand.
  • Yu, C., Shao, Y., Wang, K. & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with Applications, 121, 1-17. doi: https://doi.org/10.1016/j.eswa.2018.12.010
  • Zhang, B., Dong, Y. & Herrera-Viedma, E. (2019) Group decision making with heterogeneous preference structures: An automatic mechanism to support consensus reaching. Group Decision and Negotiation, 28(3), 585-617. doi: https://doi.org/10.1007/s10726-018-09609-y
  • Zhang, Z., Gao, Y. & Li, Z. (2020). Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowledge-Based Systems, 204, 106240. doi: https://doi.org/10.1016/j.knosys.2020.106240
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Gülveren Tabansız 0000-0003-4204-1364

Aslı Sebatlı Sağlam 0000-0002-9445-6740

Fatih Çavdur 0000-0001-8054-5606

Early Pub Date April 27, 2023
Publication Date April 29, 2023
Acceptance Date February 24, 2023
Published in Issue Year 2023

Cite

APA Tabansız, G., Sebatlı Sağlam, A., & Çavdur, F. (2023). ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(1), 544-557. https://doi.org/10.31796/ogummf.1145417
AMA Tabansız G, Sebatlı Sağlam A, Çavdur F. ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. April 2023;31(1):544-557. doi:10.31796/ogummf.1145417
Chicago Tabansız, Gülveren, Aslı Sebatlı Sağlam, and Fatih Çavdur. “ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 1 (April 2023): 544-57. https://doi.org/10.31796/ogummf.1145417.
EndNote Tabansız G, Sebatlı Sağlam A, Çavdur F (April 1, 2023) ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 1 544–557.
IEEE G. Tabansız, A. Sebatlı Sağlam, and F. Çavdur, “ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 1, pp. 544–557, 2023, doi: 10.31796/ogummf.1145417.
ISNAD Tabansız, Gülveren et al. “ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/1 (April 2023), 544-557. https://doi.org/10.31796/ogummf.1145417.
JAMA Tabansız G, Sebatlı Sağlam A, Çavdur F. ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. 2023;31:544–557.
MLA Tabansız, Gülveren et al. “ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 1, 2023, pp. 544-57, doi:10.31796/ogummf.1145417.
Vancouver Tabansız G, Sebatlı Sağlam A, Çavdur F. ÖĞRENCİ-PROJE ATAMA PROBLEMİNDE FARKLI GRUP KARARLARININ DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. 2023;31(1):544-57.

20873 13565 13566 15461 13568  14913