Research Article
BibTex RIS Cite

BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ

Year 2019, , 47 - 59, 30.04.2019
https://doi.org/10.31796/ogummf.519900

Abstract

Kağıt sektöründe kesme
problemleri pek çok çalışmaya konu olmuştur. Kutu üretiminde farklı boyutlara
sahip kutular farklı ebatlarda bobinlerin kesilmesi ile elde edilebilirler. Bu
tip problemlerde amaçlanan genellikle kesme sonrası fireyi en azlamaktır. Kesme
problemlerini konu alan çalışmaların çoğunda standart bobin enlerinin bilindiği
varsayılmaktadır ve eniyi kesme planı kombinasyonunun belirlenmesi problemi
çözülmektedir. Ancak çözümün etkinliği büyük ölçüde ana malzeme boyutlarına
dayanmaktadır. Farklı boyutlarda bobin bulundurmak, fireyi azaltırken stok
maliyetlerini de artırmaktadır. Bu tür problemlerin karakteristikleri, kesme
probleminin boyutuna göre de farklılaşabilmektedir.



 



Bu çalışmada, oluklu mukavva
üreten bir fabrikada toplam fireyi ve standart bobin eni çeşitliliğini azaltmak
amacıyla, 1.5 boyutlu kesme problemlerinde standart bobin eni seçimi problemi
ele alınmış, problem iki aşamalı bir yöntem kullanılarak çözülmüştür. İlk
aşamada sayımlama yöntemiyle, kısıtları sağlayan kesme planları türetilmiş,
ikinci aşamada ise geliştirilen bir matematiksel model yardımıyla stokta
bulunması gereken bobin enlerine karar verilmiştir. Geliştirilen matematiksel
model ile eniyi çözüm bulunmuş, ayrıca problem, elde bulundurulacak stok
enlerine üst sınırlar verilerek çözdürüldüğünde de çok daha düşük fire
oranlarına ulaşılabilmiştir. 

References

  • Bayır, F. (2012). Kesme problemine sezgisel bir yaklaşım, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü İşletme Fakültesi Sayısal Yöntemler Anabilim Dalı, Doktora Tezi.
  • Beasley JE, (1985), An algorithm for the two dimensional assortment problem, European Journal Of Operational Research,19, 253-261.
  • Chauhan, S. S.; Martel, Alain; D'Arnour, Sophie, (2008), Roll assortment optimization in a paper mill: An integer programming approach, Computers and Operations Research 35, 2, 614-627.
  • Chauny F, Loulou R, Sadones S, Soumis F, (1991), A Two-phase heuristic for the two-dimensional cutting-stock problem., Journal of The Operational Research Society, 42, (1) 39-47.
  • Cloud FH, (1994), Analysis of corrugator side trim, Tappi Journal, 77, (4) 199-205.
  • Dyckhoff H, (1990), A typology of cutting and packing problems, European Journal Of Operational Research, 44,145-159.
  • Dyckhoff H, Kruse HJ, Abel D, Gal T, (1985), Trim Loss and Related Problems, OMEGA The İnternational Journal of Management Science, 13, (1), 59-72.
  • Farley AA, (1990), Selection of stockplate characteristics and cutting style for two dimensional cutting stock situations, European Journal Of Operational Research, 44, 239-246.
  • Gasimov RN., Sipahioğlu A., Saraç T., (2007), A multi-objective programming approach to 1.5-dimensional assortment problem, European Journal of Operational Research, 179, 64-79.
  • Gemmill DD, Sanders JL, (1990), Approximate solutions for the cutting stock 'portfolio' problem, European Journal Of Operational Research, 44,167-174.
  • Gochet W, Vandebroek M, (1989), A dynamic programming based heuristic for industrial buying of cardboard, European Journal Of Operational Research, 38, 104-112.
  • Haessler RW, Sweeney PE, (1991), Cutting stock problems and solution procedures., European Journal Of Operational Research,54, (2) 141-150.
  • Hifi M, Zissimopoulos V, (1997), Constrained two-dimensional cutting: An improvement of Christofides and Whitlock's exact algorithm, Journal of The Operational Research Society, 48, (3) 324-331.
  • Holthaus, O., 2003, On the best number of different standard lengths to stock for one-dimensional assortment problems, International Journal of Production Economics, 83, 3, 233-246.
  • Kasimbeyli N, Sarac T, Kasimbeyli R, (2011), A two-objective mathematical model without cutting patterns for one-dimensional assortment problems, Journal of Computatıonal and Applıed Mathematıcs, 235, (16), Pages: 4663-4674.
  • Morabito RN, Arenales MN, Arcaro VF, (1992), And-or-graph approach for two-dimensional cutting problems., European Journal Of Operational Research, 58, (2) 263-271.
  • Pentico DW, (1988), "The discrete two dimensional assortment problem", Operations Research, 36, (2) 324-332.
  • Raffensperger, John F., (2010), The generalized assortment and best cutting stock length problems, Internatıonal Transactıons in Operatıonal Research, 17, (1), Pages: 35-49.
  • Rohde ES, (1995), Producing corrugated packing profitably, Jelmar Publishing, New York.
  • Saraç T., Özdemir M.S., (2003), "A genetic algorithm for 1,5 dimensional assortment problems with multiple objectives ", Lecture Notes in Artificial Intelligence, 2718, 41-51.
  • Sevük N, (1996), Bir Boyutlu Malzeme Kesme Problemi İçin Kesme Planlarının Kombinasyonunda Genetik Algoritma Kullanılması, Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 63s.
  • Song, X., Chu, C.B., Nie, Y.Y., Bennel, J.A.., 2006. An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem. European Journal of Operational Research, 175,1870–1889
  • Uysal C, (1997), Oluklu Mukavva El Kitabı, OMÜD Oluklu Mukavva Sanayicileri Derneği, İzmir
  • Wascher, G., Haußner, H., Schumann, H., (2005), “An improved typology of cutting and packing problems.” Working Paper No. 24, Last Revision: 2005-05-17, Otto von Guericke University, 38 p.
  • Yanasse HH, Zinober ASI, Harris RG, (1991), "Two-dimensional Cutting Stock with Multiple Stock Size", Journal of The Operational Research Society, 42, (8) 673-683.
Year 2019, , 47 - 59, 30.04.2019
https://doi.org/10.31796/ogummf.519900

Abstract

References

  • Bayır, F. (2012). Kesme problemine sezgisel bir yaklaşım, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü İşletme Fakültesi Sayısal Yöntemler Anabilim Dalı, Doktora Tezi.
  • Beasley JE, (1985), An algorithm for the two dimensional assortment problem, European Journal Of Operational Research,19, 253-261.
  • Chauhan, S. S.; Martel, Alain; D'Arnour, Sophie, (2008), Roll assortment optimization in a paper mill: An integer programming approach, Computers and Operations Research 35, 2, 614-627.
  • Chauny F, Loulou R, Sadones S, Soumis F, (1991), A Two-phase heuristic for the two-dimensional cutting-stock problem., Journal of The Operational Research Society, 42, (1) 39-47.
  • Cloud FH, (1994), Analysis of corrugator side trim, Tappi Journal, 77, (4) 199-205.
  • Dyckhoff H, (1990), A typology of cutting and packing problems, European Journal Of Operational Research, 44,145-159.
  • Dyckhoff H, Kruse HJ, Abel D, Gal T, (1985), Trim Loss and Related Problems, OMEGA The İnternational Journal of Management Science, 13, (1), 59-72.
  • Farley AA, (1990), Selection of stockplate characteristics and cutting style for two dimensional cutting stock situations, European Journal Of Operational Research, 44, 239-246.
  • Gasimov RN., Sipahioğlu A., Saraç T., (2007), A multi-objective programming approach to 1.5-dimensional assortment problem, European Journal of Operational Research, 179, 64-79.
  • Gemmill DD, Sanders JL, (1990), Approximate solutions for the cutting stock 'portfolio' problem, European Journal Of Operational Research, 44,167-174.
  • Gochet W, Vandebroek M, (1989), A dynamic programming based heuristic for industrial buying of cardboard, European Journal Of Operational Research, 38, 104-112.
  • Haessler RW, Sweeney PE, (1991), Cutting stock problems and solution procedures., European Journal Of Operational Research,54, (2) 141-150.
  • Hifi M, Zissimopoulos V, (1997), Constrained two-dimensional cutting: An improvement of Christofides and Whitlock's exact algorithm, Journal of The Operational Research Society, 48, (3) 324-331.
  • Holthaus, O., 2003, On the best number of different standard lengths to stock for one-dimensional assortment problems, International Journal of Production Economics, 83, 3, 233-246.
  • Kasimbeyli N, Sarac T, Kasimbeyli R, (2011), A two-objective mathematical model without cutting patterns for one-dimensional assortment problems, Journal of Computatıonal and Applıed Mathematıcs, 235, (16), Pages: 4663-4674.
  • Morabito RN, Arenales MN, Arcaro VF, (1992), And-or-graph approach for two-dimensional cutting problems., European Journal Of Operational Research, 58, (2) 263-271.
  • Pentico DW, (1988), "The discrete two dimensional assortment problem", Operations Research, 36, (2) 324-332.
  • Raffensperger, John F., (2010), The generalized assortment and best cutting stock length problems, Internatıonal Transactıons in Operatıonal Research, 17, (1), Pages: 35-49.
  • Rohde ES, (1995), Producing corrugated packing profitably, Jelmar Publishing, New York.
  • Saraç T., Özdemir M.S., (2003), "A genetic algorithm for 1,5 dimensional assortment problems with multiple objectives ", Lecture Notes in Artificial Intelligence, 2718, 41-51.
  • Sevük N, (1996), Bir Boyutlu Malzeme Kesme Problemi İçin Kesme Planlarının Kombinasyonunda Genetik Algoritma Kullanılması, Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 63s.
  • Song, X., Chu, C.B., Nie, Y.Y., Bennel, J.A.., 2006. An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem. European Journal of Operational Research, 175,1870–1889
  • Uysal C, (1997), Oluklu Mukavva El Kitabı, OMÜD Oluklu Mukavva Sanayicileri Derneği, İzmir
  • Wascher, G., Haußner, H., Schumann, H., (2005), “An improved typology of cutting and packing problems.” Working Paper No. 24, Last Revision: 2005-05-17, Otto von Guericke University, 38 p.
  • Yanasse HH, Zinober ASI, Harris RG, (1991), "Two-dimensional Cutting Stock with Multiple Stock Size", Journal of The Operational Research Society, 42, (8) 673-683.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Tuğba Saraç 0000-0002-8115-3206

Müjgan Sağır 0000-0003-2781-658X

Publication Date April 30, 2019
Acceptance Date April 8, 2019
Published in Issue Year 2019

Cite

APA Saraç, T., & Sağır, M. (2019). BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 27(1), 47-59. https://doi.org/10.31796/ogummf.519900
AMA Saraç T, Sağır M. BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. April 2019;27(1):47-59. doi:10.31796/ogummf.519900
Chicago Saraç, Tuğba, and Müjgan Sağır. “BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 27, no. 1 (April 2019): 47-59. https://doi.org/10.31796/ogummf.519900.
EndNote Saraç T, Sağır M (April 1, 2019) BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27 1 47–59.
IEEE T. Saraç and M. Sağır, “BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ”, ESOGÜ Müh Mim Fak Derg, vol. 27, no. 1, pp. 47–59, 2019, doi: 10.31796/ogummf.519900.
ISNAD Saraç, Tuğba - Sağır, Müjgan. “BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27/1 (April 2019), 47-59. https://doi.org/10.31796/ogummf.519900.
JAMA Saraç T, Sağır M. BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. 2019;27:47–59.
MLA Saraç, Tuğba and Müjgan Sağır. “BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 27, no. 1, 2019, pp. 47-59, doi:10.31796/ogummf.519900.
Vancouver Saraç T, Sağır M. BİR OLUKLU MUKAVVA KUTU FABRİKASINDA STANDART BOBİN ENLERİNİN BELİRLENMESİ. ESOGÜ Müh Mim Fak Derg. 2019;27(1):47-59.

20873 13565 13566 15461 13568  14913