LİTYUM İYON VE NİKEL METAL HİDRİT PİLİNİN TAMAMEN ŞARJ EDİLMİŞ DURUMDAKİ ELEKTROKİMYASAL EMPEDANS DAVRANIŞININ KARŞILAŞTIRILMASI
Year 2020,
Volume: 28 Issue: 1, 1 - 8, 15.04.2020
Uğur Moralı
,
Salim Erol
Abstract
Bu çalışmada, bir
lityum-iyon pili ve bir nikel metal hidrit pili %100 şarj durumuna getirilmiştir.
Tamamen şarj edilmiş durumda empedans cevapları ölçülmüştür. Oldukça yaygın
olarak kullanılan tekrar şarj edilebilir bu pillere ait fiziksel parametreler
empedans verilerinin eşdeğer devre modeline uymasıyla elde edilmiştir. Model
ile veriler mükemmel bir şekilde uyum göstermişlerdir. Regresyon analizi ile
elde edilen parametreler bataryaların durumunu ve dinamiklerini iyi bir şekilde
açıklamaktadır. Sonuçlar geliştirilen modelin tekrar şarj edilebilir piller
için kullanılabileceğini göstermektedir. Elektrokimyasal empedans spektroskopisi
batarya ömrü, batarya performansı ve bataryanın fayda durumu ile ilgili
bilgiler veren faydalı bir tekniktir.
Supporting Institution
Eskişehir Osmangazi Üniversitesi
References
- Bruen, T., & Marco, J. (2016). Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. Journal of Power Sources, 310, 91-101. doi:10.1016/j.jpowsour.2016.01.001
- Cruz-Manzo, S., Greenwood, P., & Chen, R. (2017). An impedance model for EIS analysis of nickel metal hydride batteries. Journal of The Electrochemical Society, 164(7), A1446-A1453.
- Ecker, M., Tran, T. K. D., Dechent, P., Käbitz, S., Warnecke, A., & Sauer, D. U. (2015). Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery. Journal of The Electrochemical Society, 162(9), A1836-A1848. doi:10.1149/2.0551509jes
- Fleischer, C., Waag, W., Heyn, H.-M., & Sauer, D. U. (2014). On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. Journal of Power Sources, 260, 276-291. doi:10.1016/j.jpowsour.2014.01.129
- Galeotti, M., Cinà, L., Giammanco, C., Cordiner, S., & Di Carlo, A. (2015). Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy, 89, 678-686. doi:10.1016/j.energy.2015.05.148
- Gomez, J., Nelson, R., Kalu, E. E., Weatherspoon, M. H., & Zheng, J. P. (2011). Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects. Journal of Power Sources, 196(10), 4826-4831.
- Gong, X., Xiong, R., & Mi, C. C. (2015). Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells. IEEE Transactions on Industry Applications, 51(2), 1872-1879. doi:10.1109/tia.2014.2345951
- Hang, T., Mukoyama, D., Nara, H., Takami, N., Momma, T., & Osaka, T. (2013). Electrochemical impedance spectroscopy analysis for lithium-ion battery using Li4Ti5O12 anode. Journal of Power Sources, 222, 442-447. doi:10.1016/j.jpowsour.2012.09.010
- Huang, J., Li, Z., Liaw, B. Y., & Zhang, J. (2016). Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 309, 82-98. doi:10.1016/j.jpowsour.2016.01.073
- Itagaki, M., Honda, K., Hoshi, Y., & Shitanda, I. (2015). In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. Journal of Electroanalytical Chemistry, 737, 78-84. doi:10.1016/j.jelechem.2014.06.004
- Jaguemont, J., Boulon, L., & Dube, Y. (2016). Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures. IEEE Transactions on Vehicular Technology, 65(1), 1-14. doi:10.1109/tvt.2015.2391053
- Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. doi:10.1016/j.apenergy.2015.11.034
- Leng, F., Wei, Z., Tan, C. M., & Yazami, R. (2017). Hierarchical degradation processes in lithium-ion batteries during ageing. Electrochimica Acta, 256, 52-62. doi:10.1016/j.electacta.2017.10.007
- Li, Z., Huang, J., Liaw, B. Y., & Zhang, J. (2017). On state-of-charge determination for lithium-ion batteries. Journal of Power Sources, 348, 281-301. doi:10.1016/j.jpowsour.2017.03.001
- Morali, U., & Erol, S. (2019) Electrochemical impedance analysis of 18650 lithium-ion and 6HR61 nickel-metal hydride rechargeable batteries, Journal of the Faculty of Engineering and Architecture of Gazi University.
- Nelatury, S. R., & Singh, P. (2004). Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements. Journal of Power Sources, 132(1-2), 309-314.
- Orazem, M. E., & Tribollet, B. (2017). Electrochemical impedance spectroscopy: John Wiley & Sons.
- Raijmakers, L. H. J., Danilov, D. L., van Lammeren, J. P. M., Lammers, M. J. G., & Notten, P. H. L. (2014). Sensorless battery temperature measurements based on electrochemical impedance spectroscopy. Journal of Power Sources, 247, 539-544. doi:10.1016/j.jpowsour.2013.09.005
- Westerhoff, U., Kurbach, K., Lienesch, F., & Kurrat, M. (2016). Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technology, 4(12), 1620-1630. doi:10.1002/ente.201600154
- Xie, Y., Li, J., & Yuan, C. (2014). Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling. Electrochimica Acta, 127, 266-275. doi:10.1016/j.electacta.2014.02.035