Research Article
BibTex RIS Cite

TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU

Year 2021, Volume: 29 Issue: 1, 86 - 96, 30.04.2021
https://doi.org/10.31796/ogummf.797983

Abstract

Hidrojen peroksit tekstil endüstrisinde ağartıcı olarak kullanılan kuvvetli bir oksidant kimyasaldır ve çevreye verilmeden önce sulardan giderilmesi önemlidir. Peroksidaz (YTP) enziminin oksitleyici substratı hidrojen peroksittir. Yapılan bu çalışmada, hidrojen peroksitin giderilmesinde YTP enziminin çapraz bağlı agregatlar şeklinde immobilize edilmiştir ve çapraz bağlayıcı ajan olarak glutaraldehit (GA) kullanılmıştır. Serbest ve agregat formundaki enzimlerin kinetik parametreleri hesaplanmıştır. Serbest peroksidaz enziminin kinetic sabitleri hesaplandığında doygunluk sabiti 0,06965 mmol H2O2/L ve, maksimum özgül hız sabiti νm değeri ise 0.0232 mmol H2O2/L dk olarak bulunmuştur. Boyasız hidrojen peroksitli atık suda YTP-ÇBEA’nın (Çapraz Bağlı Enzim Agregatları) Km doygunluk sabiti 0,00625 mmol H2O2/L, maksimum özgül hız sabiti νm değeri ise 0.0699 x 10 -3 mmol H2O2/L dk olarak hesaplanmıştır. Oksidasyon işlemlerinde YTP-ÇBEA ile 15 dk içinde % 100 H2O2 uzaklaştırma sağlanmıştır. H2O2 (0,02M) içeren atık suda giderimin beş dakikada tamamlanmıştır. Ölçek büyütme yaklaşımında Euler çözüm algoritması kullanılarak veriler değerlendirilmiş ve kinetik sabitlerin değiştiği etkinlik faktör aralığında H2O2 giderimi hesaplanmıştır. Tepkime hızının doğrusal olarak değiştiği kabul edilerek elde edilen agregat formundaki enzimle ölçek büyütülmesi sırasında oluşacak aktivite farklılaşmaları % 125-% 50 aralığında belirlenmiş olup, bunlara bağlı etkinlik faktörleri dikkate alınarak endüstriyel boyutta tasarım modellenmiştir. Büyütülen tepkime hacminde oluşacak derişimler simule edilmiştir. Elde edilen sonuçlar YTP-ÇBEA’ların zaman ve maliyet açısından serbest enzime göre daha avantajlı olduğunu göstermiştir.

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi

Project Number

2011-51

References

  • Akpolat, O., Ayhan, F., Ayhan, H., (2013), Modeling of The β-D-Glucose Destruction Kinetics by Using Glucose Oxidase Enzyme Aggregates, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem]; 38 (4); 483-493.
  • Ayhan, H., Ayhan, F., Gülsu, A., (2012), Highly biocompatible enzyme aggregates crosslinked by L-lysine, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem]; 37 (1) ; 283–289.
  • Ayhan, F., İspirli, Y., Ayhan, H., (2011), Cross-Linked Glucose Oxidase Aggregates: Synthesis and Characterization, Hacettepe J. of Biology & Chemistry, 39, (3), 241-251.
  • Benli H. (2015). Selüloz Esaslı Tekstil Materyalleri İçin Çevre Dostu Terbiye Proseslerinin Oluşturulması: Yeşil Fabrika (Doktora Tezi) Erciyes Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Türkiye.
  • Bilal, M., Iqbal, H., Hu, H., Wang, W., Zhang X., 2017, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. Journal of Environmental Management 188 () 137-143.
  • Cao, L., Langen, L. Sheldon, R.A., (2003), Immobilised Enzymes: Carrier-Bound Or Carrier-Free, Curr. Opin. Biotechnol (14): 3
  • Chapman, J., Ismail,A. E., Dinu, C. Z., (2018), Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks, Catalysts, 8, 238; doi:10.3390/catal806023887-394.
  • Cuerda-Correa, E. M., Alexandre-Franco M. F. ve Fernández-González, C. (2020). Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water, 12(1), 102; https://doi.org/10.3390/w12010102
  • Dahili, L. A., Nagy, E., and Tivadar Feczkó, 2017, 2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles. J. Microbiol. Biotechnol. (2017), 27(4), 768–774. https://doi.org/10.4014/jmb.1606.06002
  • Da Silva M. R., de Sà, L. R. V., Russo C., Scio E. Ferreira-Leitao V. S., (2010). The Use of HRP in Decolorization of Reactive Dyes and Toxicological Evaluation of Their Products. SAGE-Hindawi Access to Research Enzyme Research, Article ID 703824, 7 pages http://dx.doi.org/10.4061/2010/703824.
  • Farias S., de Oliveira D., Ulson de Souza, A. A., Guelli S. M. A., de Souza U., ve Morgado A. F., (2017). Removal of reactıve blue 21 and Reactıve red 195 dyes usıng horseradısh Peroxıdase as catalyst Brazilian Journal of Chemical Engineering, 34(03), 701–707.
  • Garrido-Cardenas, J. A., Esteban-García, B., Agüera, A., Sánchez-Pérez J. A., ve Manzano-Agugliaro, F. (2020). Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 17(1): 170. doi: 10.3390/ijerph17010170
  • Grateron C., Barbosa O., Ruedaa N., Ortiz-L´opez C., Torres R., 2007, Azo dye decolorization by optimized cross linked enzyme aggregates (CLEAs) of a royal palm (Roystonea regia) peroxidase. Abstracts / Journal of Biotechnology 131S, pp: S74–S97.
  • http://kimtekskimya.com/test.html#hidrojen, Test yöntemleri: HİDROJEN PEROKSİT AKTİF MADDE TAYİNİ, Ulaşım tarihi: 26.06.2020
  • İspirli, Y. ve Ayhan, H., (2008), The Effect of Proteic Feeder on Glucose Oxidase Aggregates Formation, Hacettepe J. of Biology&Chemistry, 36, (4), 313-318.
  • Kieran, P.ve Berovic, M. (Edit) (2001), Bioprocess Engineering Course Note. The Europian Federation of Biotechnology, 286-288s.
  • Kulkarni, A. N. Kadam, S. K., Jeon, B.-H., Govindwar, S. P. (2020). Enhanced application of cross-linked enzyme aggregates of lichen Dermatocarpon vellereceum released extracellular enzymes for degradation of textile dyes. International Biodeterioration & Biodegradation, 153, 105044.
  • Leitgeb, M., Knez, Ž., Vasić, K., (2016), Micro and Nanotechnologies for Biotechnology, Chapter 2: Micro‐ and Nanocarriers for Immobilization of Enzymes, http://dx.doi.org/10.5772/63129
  • Lübbert, A., Simutis, R., Volk, N.S., Galvanuskas, V. (2000). Biochemical Process Optimization and Control, Hands-on Course. Martin Luther Universitat, Germany.
  • Mehde A. A. (2019). Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. International Journal of Biological Macromolecules 131, 721–733.
  • Mohamada, N. R., Marzukia, N. H. C., Buanga, N. A., Huyopb, Wahab, R. A., (2015), Agriculture and Environmental Biotechnology: An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for immobilized enzymes, Biotechnology & Biotechnological Equipment, 29, 2, 205-220. http://dx.doi.org/10.1080/13102818.2015.1008192
  • Opwis, K., Kiehl, K., Gutmann, J. S. (2016), Immobilization of Peroxidases on Textile Carrier Materials and their Use in Bleaching Processes, Chemical Engineering Transactions, 49, 67-72.
  • Yinca Z., Yan L., Xueyong, G., Qiao W., and Xiaoping X. (2017). Decolorization of Color Index Acid Orange 20 buffer solution using horseradish peroxidase immobilized on modified PAN-beads. RSC Adv., 7, 18976–18986.
  • Zámocky´, M., Gasselhuber, B., Furtmüller, P. G., Obinger C. (2012). Molecular evolution of hydrogen peroxide degrading enzymes. Archives of Biochemistry and Biophysics, 525, 2, 131-144. Sekuljica N. Z., Prlainovic N. Z., Jakovetic S. M., Grbavcic S. Z., Ognjanovi N. D., Knezevi-Jugovic Z. D., Mijin D. Z., 2016, Removal of Anthraquinone Dye by Cross-Linked Enzyme Aggregates From Fresh Horseradish Extract. Clean – Soil, Air, Water 44 (7), pp: 891–900. DOI: 10.1002/clen.201500766.
  • Sheldon, R.A., (2007), Enzyme Immobilization. The Quest for Optimum Performance, Adv. Synth. Catal Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 12981300s.
  • Smith, J.M., (1970), Chemical Engineering Kinetics. McGraw-Hill, Newyork.
  • Tamtürk, H. F. (2007). Pamuklu dokuma kumaşlara uygulanan seçilmiş ön terbiye İşlemlerinin Kumaş Performansına Etkisi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2007.
  • Topçular, C., (2006), Taşıyıcılı ve Taşıyıcısız Sistemlerde İmmolize Peroksidaz Enziminin Karakterizasyonu. Yüksek lisans tezi, Hacettepe Üniversitesi, Ankara.
  • Topçular, C. ve Ayhan, H., (2007), Immobilisation of Horseradish Peroxidase Onto Monodisperse Poly(glycidly methacrylate) Microspheres. J.Biomater. Sci.Polymer Edn. 18 (5): 595-596.
  • Özevci, G. ve Akpolat, O. (Danışman), (2012), Tekstil Atık Suyunda Hidrojen Peroksit in Enzimatik Giderimi, Modellenmesi ve Tasarımı, Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi, Çevre Bilimleri Ana Bilim dalı, Muğla.
  • Vršanská, M., Vobˇerková, S., Jiménez, A. M. J., Strmiska, V. ve Adam, V., 2018, Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Int. J. Environ. Res. Public Health 15, 23; doi:10.3390/ijerph15010023
  • Yamaguchi, H., Kiyota, Y., Miyazaki, M., (2018), Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions, Catalysts, 8, 174, doi:10.3390/catal8050174

MODELLING AND SIMULATION OF SCALE-UP DESIGN FOR THE REMOVAL OF HYDROGEN PEROXIDE WITH HRP-CLEA IN TEXTILE WASTEWATER

Year 2021, Volume: 29 Issue: 1, 86 - 96, 30.04.2021
https://doi.org/10.31796/ogummf.797983

Abstract

Hydrogen peroxide is a strong oxidant chemical used as a bleach in the textile industry and it is important to remove it from water before being released to the environment. The oxidizing substrate of peroxidase (HRP) enzyme is hydrogen peroxide. In this study, cross-linked aggregates of HRP enzyme were used to remove hydrogen peroxide and glutaraldehyde (GA) was used as a crosslinking agent. The saturation constant was 0,06965 mmol H2O2/L and maximum specific rate constant was found as 0.0699 x 10 -3 mmol H2O2/L min. Saturation constant, Km of HRP-CLEA (Cross Linked Enzyme Aggregates) was found as 0,06965 mmol H2O2 / L, and maximum specific rate constant value, νm, was calculated as 0.0699 x 10 -3 mmol H2O2 / L sec. In oxidation processes, 100% H2O2 removal was achieved in 15 minutes with HRP-CLEA. . The removal of the waste water containing H2O2 (0.02M) was completed in five minutes. In the scale-up approach, the data was evaluated using the Euler solution algorithm and the H2O2 removal in the efficiency factor range where the kinetic constants change was calculated. Assuming the reaction rate changes linearly, the activity variations that will occur during scaling up with the enzyme in aggregate form were determined in the range of 125% -50%, and the industrial-scale design was modelled by taking into account the activity factors. In scaling up, concentrations that will occur in the increased reaction volume have been simulated. The results obtained showed that HRP-CLEAs are more advantageous than free enzyme in terms of time and cost.

Project Number

2011-51

References

  • Akpolat, O., Ayhan, F., Ayhan, H., (2013), Modeling of The β-D-Glucose Destruction Kinetics by Using Glucose Oxidase Enzyme Aggregates, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem]; 38 (4); 483-493.
  • Ayhan, H., Ayhan, F., Gülsu, A., (2012), Highly biocompatible enzyme aggregates crosslinked by L-lysine, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem]; 37 (1) ; 283–289.
  • Ayhan, F., İspirli, Y., Ayhan, H., (2011), Cross-Linked Glucose Oxidase Aggregates: Synthesis and Characterization, Hacettepe J. of Biology & Chemistry, 39, (3), 241-251.
  • Benli H. (2015). Selüloz Esaslı Tekstil Materyalleri İçin Çevre Dostu Terbiye Proseslerinin Oluşturulması: Yeşil Fabrika (Doktora Tezi) Erciyes Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Türkiye.
  • Bilal, M., Iqbal, H., Hu, H., Wang, W., Zhang X., 2017, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. Journal of Environmental Management 188 () 137-143.
  • Cao, L., Langen, L. Sheldon, R.A., (2003), Immobilised Enzymes: Carrier-Bound Or Carrier-Free, Curr. Opin. Biotechnol (14): 3
  • Chapman, J., Ismail,A. E., Dinu, C. Z., (2018), Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks, Catalysts, 8, 238; doi:10.3390/catal806023887-394.
  • Cuerda-Correa, E. M., Alexandre-Franco M. F. ve Fernández-González, C. (2020). Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water, 12(1), 102; https://doi.org/10.3390/w12010102
  • Dahili, L. A., Nagy, E., and Tivadar Feczkó, 2017, 2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles. J. Microbiol. Biotechnol. (2017), 27(4), 768–774. https://doi.org/10.4014/jmb.1606.06002
  • Da Silva M. R., de Sà, L. R. V., Russo C., Scio E. Ferreira-Leitao V. S., (2010). The Use of HRP in Decolorization of Reactive Dyes and Toxicological Evaluation of Their Products. SAGE-Hindawi Access to Research Enzyme Research, Article ID 703824, 7 pages http://dx.doi.org/10.4061/2010/703824.
  • Farias S., de Oliveira D., Ulson de Souza, A. A., Guelli S. M. A., de Souza U., ve Morgado A. F., (2017). Removal of reactıve blue 21 and Reactıve red 195 dyes usıng horseradısh Peroxıdase as catalyst Brazilian Journal of Chemical Engineering, 34(03), 701–707.
  • Garrido-Cardenas, J. A., Esteban-García, B., Agüera, A., Sánchez-Pérez J. A., ve Manzano-Agugliaro, F. (2020). Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 17(1): 170. doi: 10.3390/ijerph17010170
  • Grateron C., Barbosa O., Ruedaa N., Ortiz-L´opez C., Torres R., 2007, Azo dye decolorization by optimized cross linked enzyme aggregates (CLEAs) of a royal palm (Roystonea regia) peroxidase. Abstracts / Journal of Biotechnology 131S, pp: S74–S97.
  • http://kimtekskimya.com/test.html#hidrojen, Test yöntemleri: HİDROJEN PEROKSİT AKTİF MADDE TAYİNİ, Ulaşım tarihi: 26.06.2020
  • İspirli, Y. ve Ayhan, H., (2008), The Effect of Proteic Feeder on Glucose Oxidase Aggregates Formation, Hacettepe J. of Biology&Chemistry, 36, (4), 313-318.
  • Kieran, P.ve Berovic, M. (Edit) (2001), Bioprocess Engineering Course Note. The Europian Federation of Biotechnology, 286-288s.
  • Kulkarni, A. N. Kadam, S. K., Jeon, B.-H., Govindwar, S. P. (2020). Enhanced application of cross-linked enzyme aggregates of lichen Dermatocarpon vellereceum released extracellular enzymes for degradation of textile dyes. International Biodeterioration & Biodegradation, 153, 105044.
  • Leitgeb, M., Knez, Ž., Vasić, K., (2016), Micro and Nanotechnologies for Biotechnology, Chapter 2: Micro‐ and Nanocarriers for Immobilization of Enzymes, http://dx.doi.org/10.5772/63129
  • Lübbert, A., Simutis, R., Volk, N.S., Galvanuskas, V. (2000). Biochemical Process Optimization and Control, Hands-on Course. Martin Luther Universitat, Germany.
  • Mehde A. A. (2019). Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. International Journal of Biological Macromolecules 131, 721–733.
  • Mohamada, N. R., Marzukia, N. H. C., Buanga, N. A., Huyopb, Wahab, R. A., (2015), Agriculture and Environmental Biotechnology: An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for immobilized enzymes, Biotechnology & Biotechnological Equipment, 29, 2, 205-220. http://dx.doi.org/10.1080/13102818.2015.1008192
  • Opwis, K., Kiehl, K., Gutmann, J. S. (2016), Immobilization of Peroxidases on Textile Carrier Materials and their Use in Bleaching Processes, Chemical Engineering Transactions, 49, 67-72.
  • Yinca Z., Yan L., Xueyong, G., Qiao W., and Xiaoping X. (2017). Decolorization of Color Index Acid Orange 20 buffer solution using horseradish peroxidase immobilized on modified PAN-beads. RSC Adv., 7, 18976–18986.
  • Zámocky´, M., Gasselhuber, B., Furtmüller, P. G., Obinger C. (2012). Molecular evolution of hydrogen peroxide degrading enzymes. Archives of Biochemistry and Biophysics, 525, 2, 131-144. Sekuljica N. Z., Prlainovic N. Z., Jakovetic S. M., Grbavcic S. Z., Ognjanovi N. D., Knezevi-Jugovic Z. D., Mijin D. Z., 2016, Removal of Anthraquinone Dye by Cross-Linked Enzyme Aggregates From Fresh Horseradish Extract. Clean – Soil, Air, Water 44 (7), pp: 891–900. DOI: 10.1002/clen.201500766.
  • Sheldon, R.A., (2007), Enzyme Immobilization. The Quest for Optimum Performance, Adv. Synth. Catal Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 12981300s.
  • Smith, J.M., (1970), Chemical Engineering Kinetics. McGraw-Hill, Newyork.
  • Tamtürk, H. F. (2007). Pamuklu dokuma kumaşlara uygulanan seçilmiş ön terbiye İşlemlerinin Kumaş Performansına Etkisi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2007.
  • Topçular, C., (2006), Taşıyıcılı ve Taşıyıcısız Sistemlerde İmmolize Peroksidaz Enziminin Karakterizasyonu. Yüksek lisans tezi, Hacettepe Üniversitesi, Ankara.
  • Topçular, C. ve Ayhan, H., (2007), Immobilisation of Horseradish Peroxidase Onto Monodisperse Poly(glycidly methacrylate) Microspheres. J.Biomater. Sci.Polymer Edn. 18 (5): 595-596.
  • Özevci, G. ve Akpolat, O. (Danışman), (2012), Tekstil Atık Suyunda Hidrojen Peroksit in Enzimatik Giderimi, Modellenmesi ve Tasarımı, Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi, Çevre Bilimleri Ana Bilim dalı, Muğla.
  • Vršanská, M., Vobˇerková, S., Jiménez, A. M. J., Strmiska, V. ve Adam, V., 2018, Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Int. J. Environ. Res. Public Health 15, 23; doi:10.3390/ijerph15010023
  • Yamaguchi, H., Kiyota, Y., Miyazaki, M., (2018), Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions, Catalysts, 8, 174, doi:10.3390/catal8050174
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Gülçin Özevci 0000-0003-1375-7443

Oguz Akpolat

Hakan Ayhan 0000-0003-2911-1655

Fatma Ayhan 0000-0003-2220-4496

Project Number 2011-51
Publication Date April 30, 2021
Acceptance Date March 17, 2021
Published in Issue Year 2021 Volume: 29 Issue: 1

Cite

APA Özevci, G., Akpolat, O., Ayhan, H., Ayhan, F. (2021). TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 29(1), 86-96. https://doi.org/10.31796/ogummf.797983
AMA Özevci G, Akpolat O, Ayhan H, Ayhan F. TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU. ESOGÜ Müh Mim Fak Derg. April 2021;29(1):86-96. doi:10.31796/ogummf.797983
Chicago Özevci, Gülçin, Oguz Akpolat, Hakan Ayhan, and Fatma Ayhan. “TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 29, no. 1 (April 2021): 86-96. https://doi.org/10.31796/ogummf.797983.
EndNote Özevci G, Akpolat O, Ayhan H, Ayhan F (April 1, 2021) TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29 1 86–96.
IEEE G. Özevci, O. Akpolat, H. Ayhan, and F. Ayhan, “TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU”, ESOGÜ Müh Mim Fak Derg, vol. 29, no. 1, pp. 86–96, 2021, doi: 10.31796/ogummf.797983.
ISNAD Özevci, Gülçin et al. “TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 29/1 (April 2021), 86-96. https://doi.org/10.31796/ogummf.797983.
JAMA Özevci G, Akpolat O, Ayhan H, Ayhan F. TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU. ESOGÜ Müh Mim Fak Derg. 2021;29:86–96.
MLA Özevci, Gülçin et al. “TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 29, no. 1, 2021, pp. 86-96, doi:10.31796/ogummf.797983.
Vancouver Özevci G, Akpolat O, Ayhan H, Ayhan F. TEKSTİL ATIK SUYUNDA HRP-CLEA İLE HİDROJEN PEROKSİDİN GİDERİLMESİ İÇİN ÖLÇEK BÜYÜTME TASARIMININ MODELLENMESİ VE SİMÜLASYONU. ESOGÜ Müh Mim Fak Derg. 2021;29(1):86-9.

20873  13565  13566 15461  13568    14913