Research Article
BibTex RIS Cite

MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE

Year 2022, Volume: 30 Issue: 1, 106 - 114, 15.04.2022
https://doi.org/10.31796/ogummf.1000345

Abstract

As environmental concerns grow, flotation researches, particularly for the recovery of fine-grained ores, encourage "bioflotation" studies, in which biological origin alternatives are used instead of traditional flotation reactives. While bioflotation applications starting from the pyrite mineral have spread to many carbonate and oxide minerals over time, and biomaterials used as a bioreagent have diversified from the microorganism itself to its metabolites and even cell components.
In this article, the use of surfactin derived from Bacillus subtilis as a bio-collector in the flotation of magnesite was investigated. The results of bioflotation studies were compared to those of oleate, traditional magnesite collector. Moreover, process models were created with statistical design methods, and the verification results of the optimization studies using model datas showed that these models were statistically strong.

Supporting Institution

TÜBİTAK ve ESOGÜ BAP

Project Number

119M711 ve 2019-2733

Thanks

This study was supported by Eskisehir Osmangazi University Scientific Research Projects Committee (Project No: 2019-2733) and the Scientific and Technological Research Council of Turkey (TUBITAK) (Project no:119M711)

References

  • Arima, K., Kakinuma, A., Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun., 31(3), 488-494. doi: https://doi.org/10.1016/0006-291X(68)90503-2
  • Amini, E., Hosseini, T.R., Oliazadeh, M., Kolahdoozan, M. (2009). Application of Acidithiobacillus ferrooxidans in coal flotation. Int. J. Coal Prep. Util., 29(6), 279-288. doi: https://doi.org/10.1080/19392690903558314
  • Atkins, A.S., Bridgwood, E.W., Davis, A.J., Pooley, F.D. (1987) A study of the suppression of pyritic sulphur in coal froth flotation by Thiobacillus ferrooxidans. Coal Prep., 5(1-2), 1-13. doi: https://doi.org/10.1080/07349348708945553
  • Attia, Y.A., Elzeky, M., Ismail, M. (1993). Enhanced separation of pyrite from oxidized coal by froth flotation using biosurface modification. Int. J. Miner. Process., 37, 61-71. doi: https://doi.org/10.1016/0301-7516(93)90005-U
  • Banat, I.M. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A REVIEW. Bioresour. Technol., 51, 1-12. doi: https://doi.org/10.1016/0960-8524(94)00101-6
  • Behera, S.K., Mulaba-Bafubiandi, A.F. (2017). Microbes assisted mineral flotation a future prospective for mineral processing industries: A Review. Miner. Proc. Ext. Met., 38(2), 96-105. doi: https://doi.org/10.1080/08827508.2016.1262861
  • Bleeze, B., Zhao, J., Harmer, S.L. (2018). Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation. Minerals, 8(3). doi: https://doi.org/10.3390/min8030086
  • Botero, A.E.C., Torem, M.L., de Mesquita, L.M.S. (2007). Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Miner. Eng., 20(10), 1026-1032. doi: https://doi.org/10.1016/j.mineng.2007.03.017
  • Botero, A.E.C., Torem, M.L., de Mesquita, L.M.S. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Miner. Eng., 21(1), 83-92. doi: https://doi.org/10.1016/j.mineng.2007.08.019
  • Cakmak, H., Gungormedi, G., Dikmen, G., Celik, P., Cabuk, A. (2017). The true methodology for rhamnolipid: Various solvents affect rhamnolipid characteristics. Eur. J. Lipid Sci. Technol., 110(10). doi: https://doi.org/10.1002/ejlt.201700002
  • Consuegra, G.L., Kutschke, S., Rudolph, M., Pollmann, K. (2020). Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Miner. Eng., 145., 1-7. doi: https://doi.org/10.1016/j.mineng.2019.106062
  • Davis, A.J., Atkins, A.S. (1988). A comparison between Thiobacillus ferrooxidans and biological by-products in the desulphurisation of coal fines in flotation. Resour. Conserv. Recycl., 1, 223-231. doi: https://doi.org/10.1016/0921-3449(88)90018-3
  • Dwyer, R., Bruckard, W.J., Rea, S., Holmes, R.J. (2012). Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Miner. Proc. Ext. Met., 121(2), 65-71. doi: https://doi.org/10.1179/1743285512Y.0000000005
  • El Zeky, M., Attia, Y.A. (1987). Coal slurries desulfurization by flotation using Thiophilic bacteria for pyrite depression. Coal Prep., 5(1-2), 15-37. doi: https://doi.org/10.1080/07349348708945554
  • Farahat, M., Hirajima, T., Sasaki, K., Aiba, Y., Doi, K. (2008). Adsorption of SIP E. coli onto quartz and its applications in froth flotation. Miner. Eng., 21(5), 389-395. doi: https://doi.org/10.1016/j.mineng.2007.10.019
  • Farghaly, M., Abdel-Khalek, N., Abdel-Khalek, M., Selim, K., Abdullah, S. (2020). Physicochemical study and application for pyrolusite separation from high manganese-iron ore in the presence of microorganisms. Physicochem. Probl. Miner. Process., 57(1), 273-284. doi: https://doi.org/10.37190/ppmp/131944
  • Gautam, K.K., Tyagi, V.K. (2006). Microbial Surfactants: A Review. J. Oleo Sci., 55(4), 155-166. doi: https://doi.org/10.5650/jos.55.155
  • Gholami, A., Khoshdast, H. (2020). Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants. Energy Sources A: Recovery Util. Environ. Eff., 1-19. doi: https://doi.org/10.1080/15567036.2020.1857477
  • Khuri, A. and Mukhopadhyay, S. (2010) Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128-149. doi: https://doi.org/10.1002/wics.73
  • Kim, G., Park, K., Choi, J., Gomez-Flores, A., Han, Y., Choi, S.Q., Kim, H. (2015). Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. Int. J. Miner. Process., 143, 98-104. doi: https://doi.org/10.1016/j.minpro.2015.09.012
  • Kinnunen, P., Miettinen, H., Bomberg, M. (2020). Review of potential microbial effects on flotation. Minerals, 10(6), 1-14. doi: https://doi.org/10.3390/min10060533
  • La Vars, S.M., Quinton, J.S., Harmer, S.L. (2021). Surface characterisation of pyrite exposed to A. brierleyi. Miner. Eng., 168, 1-10. doi: https://doi.org/10.1016/j.mineng.2021.106934
  • Lopez, L.Y., Merma, A.G., Torem, M.L., Pino, G.H. (2015). Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagent. Miner. Eng., 75, 63-69. doi: https://doi.org/10.1016/j.mineng.2014.12.022
  • Mehrabani, J.V., Mousavi, S.M., Noaparast, M. (2011). Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead-zinc ore. Sep. Purif. Technol., 80(2), 202-208. doi: https://doi.org/10.1016/j.seppur.2011.04.006
  • Merma, A.G., Torem, M.L., Moran, J.J.V., Monte, M.B.M. (2013). On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Miner. Eng., 48, 61-67. doi: https://doi.org/10.1016/j.mineng.2012.10.018
  • Nagaoka, T., Ohmura, N., Saiki, H. (1999). A novel mineral flotation process using Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 65(8), 3588-3593. doi: https://doi.org/10.1128/AEM.65.8.3588-3593.1999
  • Natarajan, K.A., Padukone, S.U. (2012). Microbially-induced separation of quartz from hematite using yeast cells and metabolites. Miner. Metall. Proc., 29(2), 81-87. doi: https://doi.org/10.1007/BF03402398
  • Ohno, A., Ano, T., Shoda, M. (1995). Production of a Lipopeptide Antibiotic, Surfactin, by Recombinant Bacillus subtilis in Solid State Fermentation. Biotechnol. Bioeng., 47(2), 209-214. doi: https://doi.org/10.1002/bit.260470212
  • Otsuki, A. (2016). Use of microorganisms for complex ore beneficiation: Bioflotation as an example, In Encyclopedia of Biocolloid and Biointerface Science, ed. Ohshima, H., 1 ed, pp. 108-117. doi: https://doi.org/10.1002/9781119075691.ch8
  • Pereira, A.R.M., Hacha, R.R., Torem, M.L., Merma, A.G., Silvas, F.P.C., Abhilash, A. (2021). Direct hematite flotation from an iron ore tailing using an innovative biosurfactant. Sep. Sci. Technol., 1-11. doi: https://doi.org/10.1080/01496395.2021.1873374
  • Rahman, P.K.S.M., Gakpe, E. (2008). Production, characterisation and applications of biosurfactants-Review. Biotechnology, 7(2), 360-370. doi: https://doi.org/10.3923/biotech.2008.360.370
  • Razafindralambo, H., Paquot, M., Baniel, A., Popineau, Y., Hbid, C., Jacques, P., Thonart, P. (1996). Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J. Am. Oil Chem. Soc., 73(1), 149-151. doi: https://doi.org/10.1007/BF02523463
  • Santhiya, D., Subramanian, S., Natarajan, K.A. (2002). Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J. Colloid Interface Sci., 256(2), 237-248. doi: https://doi.org/10.1006/jcis.2002.8681
  • Sanwani, E., Chaerun, S., Mirahati, R., Wahyuningsih, T. (2016). Bioflotation: Bacteria-mineral interaction for eco-friendly and sustainable mineral processing, In 5th International Conference on Recent Advances in Materials, Minerals and Environment, pp. 666-672. doi: https://doi.org/10.1016/j.proche.2016.03.068
  • Sarvamangala, H., Natarajan, K.A. (2011). Microbially induced flotation of alumina, silica/calcite from haematite. Int. J. Miner. Process., 99(1-4), 70-77. doi: https://doi.org/10.1016/j.minpro.2011.04.003
  • Shaligram, N.S., Singhal, R.S. (2010). Surfactin – A Review on Biosynthesis, Fermentation, Purification and Applications. Food Technol. Biotechnol., 48(2), 119-134.
  • Smith, R.W., Miettinen, M. (2006). Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner. Eng., 19(6-8), 548-553. doi: https://doi.org/10.1016/j.mineng.2005.09.007
  • Souza, E.C., Vessoni-Penna, T.C., de Souza Oliveira, R.P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad., 89, 88-94. doi: https://doi.org/10.1016/j.ibiod.2014.01.007
  • Townsley, C.C., Atkins, A.S., Davis, A.J. (1987). Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans. Biotechnol. Bioeng., 30, 1-8. doi: https://doi.org/10.1002/bit.260300102
  • Varjani, S.J., Upasani, V.N. (2016). Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol., 220, 175-182. doi: https://doi.org/10.1016/j.biortech.2016.08.060
  • Vasanthakumar, B., Ravishankar, H., Subramanian, S. (2014). Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation. Appl. Microbiol. Biotechnol., 98(6), 2719-2728. doi: https://doi.org/10.1007/s00253-013-5251-9
  • Vecino, X., Devesa-Rey, R., Cruz, J.M., Moldes, A.B. (2013). Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. J. Environ. Manage., 128, 655-660. doi: https://doi.org/10.1016/j.jenvman.2013.06.011
  • Whang, L.M., Liu, P.W., Ma, C.C., Cheng, S.S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater., 151(1), 155-163. doi: https://doi.org/10.1016/j.jhazmat.2007.05.063
  • Yang, H., Li, T., Tang, Q., Wang, C., Ma, W. (2013). Development of a bio-based collector by isolating a bacterial strain using flotation and culturing techniques. Int. J. Miner. Process., 123, 145-151. doi: https://doi.org/10.1016/j.minpro.2013.06.004
  • Yang, Z., Feng, Y., Li, H., Wang, W., Teng, Q. (2014). Effect of biological pretreatment on flotation recovery of pyrolusite. Trans. Nonferrous Met. Soc. China, 24(5), 1571-1577. doi: https://doi.org/10.1016/S1003-6326(14)63227-1
  • Yehia, A., Khalek, M.A., Ammar, M. (2017). Cellulase as a new phosphate depressant in dolomite-phosphate flotation. Physicochem. Probl. Miner. Process., 53(2), 1092-1104. doi: https://doi.org/10.5277/ppmp170232
  • Zhao, J.M., Wu, W.J., Zhang, X., Zhu, M.L., Tan, W.S. (2017). Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals. Int. J. Miner. Process., 168, 40-47. doi: https://doi.org/10.1016/j.minpro.2017.09.002
  • Zheng, X., Arps, P.J., Smith, R.W. (2001). Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. Int. J. Miner. Process., 62, 159-172. doi: https://doi.org/10.1016/S0301-7516(00)00050-8

İKİ FARKLI TOPLAYICI İLE YAPILAN MANYEZİT FLOTASYON SÜREÇLERİNİN MODELLENMESİ: BİYOTOPLAYICI VE OLEAT

Year 2022, Volume: 30 Issue: 1, 106 - 114, 15.04.2022
https://doi.org/10.31796/ogummf.1000345

Abstract

Çevresel kaygılar artması, özellikle ince taneli cevherlerin geri kazanılması için yapılan flotasyon araştırmaları, geleneksel flotasyon reaktifleri yerine biyolojik kökenli alternatiflerin kullanıldığı “biyoflotasyon” çalışmalarını teşvik etmektedir. Pirit mineralinden başlayan biyoflotasyon uygulamaları zamanla birçok karbonatlı ve oksitli minerallere yayılmış, reaktif olarak kullanılan biyolojik maddeler ise mikroorganizmanın kendisinden metabolitlerine ve hatta hücre bileşenlerine kadar çeşitlenmiştir.
Bu makalede, Bacillus subtilis'ten elde edilen surfaktinin manyezit flotasyonunda biyotoplayıcı olarak kullanımı araştırılmıştır. Biyoflotasyon çalışmalarının sonuçları, geleneksel manyezit toplayıcısı olan oleatın sonuçlarıyla karşılaştırılmıştır. Ayrıca istatistiksel tasarım yöntemleri ile süreç modelleri oluşturulmuş ve model verileri kullanılarak yapılan optimizasyon çalışmalarının doğrulama sonuçları bu modellerin istatistiksel olarak güçlü modeller olduğunu göstermiştir.

Project Number

119M711 ve 2019-2733

References

  • Arima, K., Kakinuma, A., Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun., 31(3), 488-494. doi: https://doi.org/10.1016/0006-291X(68)90503-2
  • Amini, E., Hosseini, T.R., Oliazadeh, M., Kolahdoozan, M. (2009). Application of Acidithiobacillus ferrooxidans in coal flotation. Int. J. Coal Prep. Util., 29(6), 279-288. doi: https://doi.org/10.1080/19392690903558314
  • Atkins, A.S., Bridgwood, E.W., Davis, A.J., Pooley, F.D. (1987) A study of the suppression of pyritic sulphur in coal froth flotation by Thiobacillus ferrooxidans. Coal Prep., 5(1-2), 1-13. doi: https://doi.org/10.1080/07349348708945553
  • Attia, Y.A., Elzeky, M., Ismail, M. (1993). Enhanced separation of pyrite from oxidized coal by froth flotation using biosurface modification. Int. J. Miner. Process., 37, 61-71. doi: https://doi.org/10.1016/0301-7516(93)90005-U
  • Banat, I.M. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A REVIEW. Bioresour. Technol., 51, 1-12. doi: https://doi.org/10.1016/0960-8524(94)00101-6
  • Behera, S.K., Mulaba-Bafubiandi, A.F. (2017). Microbes assisted mineral flotation a future prospective for mineral processing industries: A Review. Miner. Proc. Ext. Met., 38(2), 96-105. doi: https://doi.org/10.1080/08827508.2016.1262861
  • Bleeze, B., Zhao, J., Harmer, S.L. (2018). Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation. Minerals, 8(3). doi: https://doi.org/10.3390/min8030086
  • Botero, A.E.C., Torem, M.L., de Mesquita, L.M.S. (2007). Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Miner. Eng., 20(10), 1026-1032. doi: https://doi.org/10.1016/j.mineng.2007.03.017
  • Botero, A.E.C., Torem, M.L., de Mesquita, L.M.S. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Miner. Eng., 21(1), 83-92. doi: https://doi.org/10.1016/j.mineng.2007.08.019
  • Cakmak, H., Gungormedi, G., Dikmen, G., Celik, P., Cabuk, A. (2017). The true methodology for rhamnolipid: Various solvents affect rhamnolipid characteristics. Eur. J. Lipid Sci. Technol., 110(10). doi: https://doi.org/10.1002/ejlt.201700002
  • Consuegra, G.L., Kutschke, S., Rudolph, M., Pollmann, K. (2020). Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Miner. Eng., 145., 1-7. doi: https://doi.org/10.1016/j.mineng.2019.106062
  • Davis, A.J., Atkins, A.S. (1988). A comparison between Thiobacillus ferrooxidans and biological by-products in the desulphurisation of coal fines in flotation. Resour. Conserv. Recycl., 1, 223-231. doi: https://doi.org/10.1016/0921-3449(88)90018-3
  • Dwyer, R., Bruckard, W.J., Rea, S., Holmes, R.J. (2012). Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Miner. Proc. Ext. Met., 121(2), 65-71. doi: https://doi.org/10.1179/1743285512Y.0000000005
  • El Zeky, M., Attia, Y.A. (1987). Coal slurries desulfurization by flotation using Thiophilic bacteria for pyrite depression. Coal Prep., 5(1-2), 15-37. doi: https://doi.org/10.1080/07349348708945554
  • Farahat, M., Hirajima, T., Sasaki, K., Aiba, Y., Doi, K. (2008). Adsorption of SIP E. coli onto quartz and its applications in froth flotation. Miner. Eng., 21(5), 389-395. doi: https://doi.org/10.1016/j.mineng.2007.10.019
  • Farghaly, M., Abdel-Khalek, N., Abdel-Khalek, M., Selim, K., Abdullah, S. (2020). Physicochemical study and application for pyrolusite separation from high manganese-iron ore in the presence of microorganisms. Physicochem. Probl. Miner. Process., 57(1), 273-284. doi: https://doi.org/10.37190/ppmp/131944
  • Gautam, K.K., Tyagi, V.K. (2006). Microbial Surfactants: A Review. J. Oleo Sci., 55(4), 155-166. doi: https://doi.org/10.5650/jos.55.155
  • Gholami, A., Khoshdast, H. (2020). Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants. Energy Sources A: Recovery Util. Environ. Eff., 1-19. doi: https://doi.org/10.1080/15567036.2020.1857477
  • Khuri, A. and Mukhopadhyay, S. (2010) Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128-149. doi: https://doi.org/10.1002/wics.73
  • Kim, G., Park, K., Choi, J., Gomez-Flores, A., Han, Y., Choi, S.Q., Kim, H. (2015). Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. Int. J. Miner. Process., 143, 98-104. doi: https://doi.org/10.1016/j.minpro.2015.09.012
  • Kinnunen, P., Miettinen, H., Bomberg, M. (2020). Review of potential microbial effects on flotation. Minerals, 10(6), 1-14. doi: https://doi.org/10.3390/min10060533
  • La Vars, S.M., Quinton, J.S., Harmer, S.L. (2021). Surface characterisation of pyrite exposed to A. brierleyi. Miner. Eng., 168, 1-10. doi: https://doi.org/10.1016/j.mineng.2021.106934
  • Lopez, L.Y., Merma, A.G., Torem, M.L., Pino, G.H. (2015). Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagent. Miner. Eng., 75, 63-69. doi: https://doi.org/10.1016/j.mineng.2014.12.022
  • Mehrabani, J.V., Mousavi, S.M., Noaparast, M. (2011). Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead-zinc ore. Sep. Purif. Technol., 80(2), 202-208. doi: https://doi.org/10.1016/j.seppur.2011.04.006
  • Merma, A.G., Torem, M.L., Moran, J.J.V., Monte, M.B.M. (2013). On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Miner. Eng., 48, 61-67. doi: https://doi.org/10.1016/j.mineng.2012.10.018
  • Nagaoka, T., Ohmura, N., Saiki, H. (1999). A novel mineral flotation process using Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 65(8), 3588-3593. doi: https://doi.org/10.1128/AEM.65.8.3588-3593.1999
  • Natarajan, K.A., Padukone, S.U. (2012). Microbially-induced separation of quartz from hematite using yeast cells and metabolites. Miner. Metall. Proc., 29(2), 81-87. doi: https://doi.org/10.1007/BF03402398
  • Ohno, A., Ano, T., Shoda, M. (1995). Production of a Lipopeptide Antibiotic, Surfactin, by Recombinant Bacillus subtilis in Solid State Fermentation. Biotechnol. Bioeng., 47(2), 209-214. doi: https://doi.org/10.1002/bit.260470212
  • Otsuki, A. (2016). Use of microorganisms for complex ore beneficiation: Bioflotation as an example, In Encyclopedia of Biocolloid and Biointerface Science, ed. Ohshima, H., 1 ed, pp. 108-117. doi: https://doi.org/10.1002/9781119075691.ch8
  • Pereira, A.R.M., Hacha, R.R., Torem, M.L., Merma, A.G., Silvas, F.P.C., Abhilash, A. (2021). Direct hematite flotation from an iron ore tailing using an innovative biosurfactant. Sep. Sci. Technol., 1-11. doi: https://doi.org/10.1080/01496395.2021.1873374
  • Rahman, P.K.S.M., Gakpe, E. (2008). Production, characterisation and applications of biosurfactants-Review. Biotechnology, 7(2), 360-370. doi: https://doi.org/10.3923/biotech.2008.360.370
  • Razafindralambo, H., Paquot, M., Baniel, A., Popineau, Y., Hbid, C., Jacques, P., Thonart, P. (1996). Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J. Am. Oil Chem. Soc., 73(1), 149-151. doi: https://doi.org/10.1007/BF02523463
  • Santhiya, D., Subramanian, S., Natarajan, K.A. (2002). Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J. Colloid Interface Sci., 256(2), 237-248. doi: https://doi.org/10.1006/jcis.2002.8681
  • Sanwani, E., Chaerun, S., Mirahati, R., Wahyuningsih, T. (2016). Bioflotation: Bacteria-mineral interaction for eco-friendly and sustainable mineral processing, In 5th International Conference on Recent Advances in Materials, Minerals and Environment, pp. 666-672. doi: https://doi.org/10.1016/j.proche.2016.03.068
  • Sarvamangala, H., Natarajan, K.A. (2011). Microbially induced flotation of alumina, silica/calcite from haematite. Int. J. Miner. Process., 99(1-4), 70-77. doi: https://doi.org/10.1016/j.minpro.2011.04.003
  • Shaligram, N.S., Singhal, R.S. (2010). Surfactin – A Review on Biosynthesis, Fermentation, Purification and Applications. Food Technol. Biotechnol., 48(2), 119-134.
  • Smith, R.W., Miettinen, M. (2006). Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner. Eng., 19(6-8), 548-553. doi: https://doi.org/10.1016/j.mineng.2005.09.007
  • Souza, E.C., Vessoni-Penna, T.C., de Souza Oliveira, R.P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad., 89, 88-94. doi: https://doi.org/10.1016/j.ibiod.2014.01.007
  • Townsley, C.C., Atkins, A.S., Davis, A.J. (1987). Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans. Biotechnol. Bioeng., 30, 1-8. doi: https://doi.org/10.1002/bit.260300102
  • Varjani, S.J., Upasani, V.N. (2016). Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol., 220, 175-182. doi: https://doi.org/10.1016/j.biortech.2016.08.060
  • Vasanthakumar, B., Ravishankar, H., Subramanian, S. (2014). Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation. Appl. Microbiol. Biotechnol., 98(6), 2719-2728. doi: https://doi.org/10.1007/s00253-013-5251-9
  • Vecino, X., Devesa-Rey, R., Cruz, J.M., Moldes, A.B. (2013). Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. J. Environ. Manage., 128, 655-660. doi: https://doi.org/10.1016/j.jenvman.2013.06.011
  • Whang, L.M., Liu, P.W., Ma, C.C., Cheng, S.S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater., 151(1), 155-163. doi: https://doi.org/10.1016/j.jhazmat.2007.05.063
  • Yang, H., Li, T., Tang, Q., Wang, C., Ma, W. (2013). Development of a bio-based collector by isolating a bacterial strain using flotation and culturing techniques. Int. J. Miner. Process., 123, 145-151. doi: https://doi.org/10.1016/j.minpro.2013.06.004
  • Yang, Z., Feng, Y., Li, H., Wang, W., Teng, Q. (2014). Effect of biological pretreatment on flotation recovery of pyrolusite. Trans. Nonferrous Met. Soc. China, 24(5), 1571-1577. doi: https://doi.org/10.1016/S1003-6326(14)63227-1
  • Yehia, A., Khalek, M.A., Ammar, M. (2017). Cellulase as a new phosphate depressant in dolomite-phosphate flotation. Physicochem. Probl. Miner. Process., 53(2), 1092-1104. doi: https://doi.org/10.5277/ppmp170232
  • Zhao, J.M., Wu, W.J., Zhang, X., Zhu, M.L., Tan, W.S. (2017). Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals. Int. J. Miner. Process., 168, 40-47. doi: https://doi.org/10.1016/j.minpro.2017.09.002
  • Zheng, X., Arps, P.J., Smith, R.W. (2001). Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. Int. J. Miner. Process., 62, 159-172. doi: https://doi.org/10.1016/S0301-7516(00)00050-8
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Derya Öz Aksoy 0000-0003-0604-3661

Serhat Özdemir 0000-0002-9238-0658

Sabiha Koca 0000-0002-9115-0957

Hakan Çakmak 0000-0002-5642-0982

Pınar Aytar Çelik 0000-0002-9447-1668

Doç. Dr. Ahmet Çabuk 0000-0002-4619-6948

Hüseyin Koca 0000-0002-4020-0176

Project Number 119M711 ve 2019-2733
Publication Date April 15, 2022
Acceptance Date November 10, 2021
Published in Issue Year 2022 Volume: 30 Issue: 1

Cite

APA Öz Aksoy, D., Özdemir, S., Koca, S., Çakmak, H., et al. (2022). MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(1), 106-114. https://doi.org/10.31796/ogummf.1000345
AMA Öz Aksoy D, Özdemir S, Koca S, Çakmak H, Aytar Çelik P, Çabuk DDA, Koca H. MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE. ESOGÜ Müh Mim Fak Derg. April 2022;30(1):106-114. doi:10.31796/ogummf.1000345
Chicago Öz Aksoy, Derya, Serhat Özdemir, Sabiha Koca, Hakan Çakmak, Pınar Aytar Çelik, Doç. Dr. Ahmet Çabuk, and Hüseyin Koca. “MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, no. 1 (April 2022): 106-14. https://doi.org/10.31796/ogummf.1000345.
EndNote Öz Aksoy D, Özdemir S, Koca S, Çakmak H, Aytar Çelik P, Çabuk DDA, Koca H (April 1, 2022) MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 1 106–114.
IEEE D. Öz Aksoy, S. Özdemir, S. Koca, H. Çakmak, P. Aytar Çelik, D. D. A. Çabuk, and H. Koca, “MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE”, ESOGÜ Müh Mim Fak Derg, vol. 30, no. 1, pp. 106–114, 2022, doi: 10.31796/ogummf.1000345.
ISNAD Öz Aksoy, Derya et al. “MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/1 (April 2022), 106-114. https://doi.org/10.31796/ogummf.1000345.
JAMA Öz Aksoy D, Özdemir S, Koca S, Çakmak H, Aytar Çelik P, Çabuk DDA, Koca H. MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE. ESOGÜ Müh Mim Fak Derg. 2022;30:106–114.
MLA Öz Aksoy, Derya et al. “MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 30, no. 1, 2022, pp. 106-14, doi:10.31796/ogummf.1000345.
Vancouver Öz Aksoy D, Özdemir S, Koca S, Çakmak H, Aytar Çelik P, Çabuk DDA, Koca H. MODELLING OF MAGNESITE FLOTATIONS WITH TWO DIFFERENT COLLECTORS: BIOCOLLECTOR AND OLEATE. ESOGÜ Müh Mim Fak Derg. 2022;30(1):106-14.

20873  13565  13566 15461  13568    14913