Research Article
BibTex RIS Cite

POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ

Year 2022, Volume: 30 Issue: 2, 280 - 288, 18.08.2022
https://doi.org/10.31796/ogummf.1078998

Abstract

Polietilen (PE) kısmi termoplastik bir malzemedir. Polietilen plastik filmler mükemmel ısıl ve mekanik özellikleri ve düşük fiyatından dolayı ticari olarak geniş kullanım alanına sahiptirler. Hekzagonal bor nitrür (hBN) grafite benzer tabakalı bir yapıdadır, süper katı yağlayıcı, UV ışın yayıcı veya kompozitlerde ısıl iletkenlik artırıcı ajan olarak kullanılabilir. Bunlara ek olarak termoplastik polimerlerin ekstrüzyon tekniği ile üretiminde, ergime kırılması ve akışkan kararsızlığını önlemek için kullanımları yaygınlaşmaktadır. hBN’ün mikro boyutlu tanelerinin kimyasal eksflasyonu ile elde edilen, üstün mekanik ve ısıl özelliklere sahip nano tabakalı bor nitrür (BNNS), polimerlerin ısıl, bariyer ve mekanik özelliklerini iyileştirmek için dolgu maddesi olarak kullanımı literatürde yerini almıştır. Alçak yoğunluklu polietilen (AYPE) filmlerin kullanımından sonra biyobozunurlukları üzerinde çeşitli çalışmalar vardır. AYPE-BNNS içeren kompozit filmlerin biyobozunurlukları ile ilgili bir çalışmaya rastlanmamıştır. Bu çalışmada, daha önce ekstrüzyon yöntemi ile hazırlanmış ve karakterizasyon testleri yapılmış olan BNNS içeren AYPE nanokompozit filmlerin biyobozunurluk özelliklerinin belirlenmesi incelenmiştir. Biyobozunurluk analizleri ASTM D 5988-03 (Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic Materials After Composting)’e göre yapılmıştır. Biyobozunurluk analizleri ile bulunan CO2 miktarının / elementel analiz sonucu bulunan teorik CO2 miktarına oranı yüzde (%) biyobozunurluk olarak hesaplanmıştır.

Supporting Institution

Anadolu Üniversitesi Bilimsel Araştırma

Project Number

1306F175

Thanks

Yazarlar, Anadolu Üniversitesi Bilimsel Araştırma projesi no 1306F175 ile bu çalışmasının yapılmasına destekleri için Anadolu Üniversitesine teşekkür ederler.

References

  • Ali M., Abdala A., Large scale synthesis of hexagonal boron nitride nanosheets and their use in thermally conductive polyethylene nanocomposites. Int.J. Energy Res., 1–14, 2021.
  • Akay A., Durukan, O., Göncü, Y., Seyhan, A.T., Ay, N., “Hexagonal boron nitride filled polymer nanofibers producing and characterization via electrospinning technique” Usak University Journal of Material Sciences 1, 35 – 41, 2012 .
  • Ardisson G.B., Tosin M., Barbale M., Degli-Innocenti F., Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach, Frontiers in Microbiology, 710,1-7,2014.
  • Arslan F., Dilsiz N..Flame resistant properties of LDPE/PLA blends containing halogen-free flame retardant., J. Appl. Polym. Scı. 2020, DOI: 10.1002/APP.48960,1-13.
  • ASTM D 5988-03 , Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic Materials After Composting.
  • ASTM D 2974-13, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils.
  • ASTM D 4972-01, Standard Test Method for pH of Soils.
  • Ay N., Göncü Y., Ay G.M., Bor Nitrür, Bor ve Malzeme Bilimi, Boren yayınları, 2020.
  • Balmain, W.H. Bemerkungen über die bildung von verbindungen des Bors und Siliciums mit Stickstoff und gewissen metallen. J. Prakt. Chem., 27, 422–430,1842.
  • Barabaszová K.C., Holešová S., Hundáková M., Kalendová A., Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers, Polymers, 12(12), 2811, 2020.
  • Barra A., Ferreira N.M., Martins M.A., Lazar O., Pantazi A., Jderu A.A., Nunes C., Eco-friendly preparation of electrically conductive chitosan-reduced graphene oxide flexible bionanocomposites for food packaging and biological applications, Compos. Sci. Tec. 173, 53-60, 2019.
  • Behera K., Kumari M., Chang Y.H., Chiu F.C., Chitosan/boron nitride nanobiocomposite films with improved properties for active food packaging applications,International Journal of Biological Macromolecules 186, 135–144, 2021.
  • Berchmans L. J., Bharathi B., Amalajyothi K., Subramanian K., Synthesis of nanocrystalline boron nitride by combustion process, Int. J. of Self-Propagating High-Temperature Synthesis, Vol. 18, 34–37, 2009.
  • Besisaa Dina H.A., Hagrasa Mahmoud A. A., Ewaisa Emad M.M., Ahmeda Yasser M. Z., Zakia Zaki I., Ahmed A., Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors, J.Ceram. Process. Res. vol. 17, 1219-1225, 2016.
  • El-Sayed MT., Rabie GH., Hamed EA., Biodegradation of low density polyethylene (LDPE) using the mixed culture of Aspergillus carbonarius and A. fumigates. s.l. : Environment, Development and Sustainability , 23:14556–14584, 2021.
  • Esmaeili A., Pourbabaee1 A.A., Alikhani H. A., Shabani F., Esmaeili E., Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil, PLoS ONE 8(9): e71720. doi:10.1371/journal.pone.00717,2013.
  • Gao, L., Li,J., Preparation of Nanostructured Hexagonal Boron Nitride Powder. s.l. : J. Am. Ceram. Soc., 86, 1982–84, 2003.
  • Ghatge S., Yang Y., Ahn J.H., Hur H.G. Biodegradation of polyethylene: a briefs., Ghatge et al. Appl Biol Chem,63:27,2-14,2020.
  • Grima S., Bellon-Maurel V., Silvestre F., Feuilloley P., A New Test Method for Determining Biodegradation of Plastic Material Under Controlled Aerobic Conditions in a Soil-Simulation Solid Environment, Journal of Polymers and the Environment, 9, 39–48 , 2001.
  • Hatzikiriakos S. G., Rathod N., Boron nitride based processing aids , Korea-Australia Rheology Journal Vol. 15, No. 4, ,173-178, 2003.
  • Jeon J.-M., Park S-J., Choi T-R., Park J-H., Yang Y-H., Yoon J-J., Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation and Stability 191, 1-8, 2021.
  • Joy J., George.E., Haritha P., Thomas S., Anas S.. An overview of boron nitride based polymer nanocomposites. J Polym Sci. 58, 3115–3141, 2020.
  • Katatchlow I.B., Yip F., Hatzikiriakos S. K., The effect of boron nitride on tehe rheology and processing of polyolefins, Rheol açta, 39, 583-594, 2000.
  • Khandare S.D., Chaudhary D.R., Jha B., Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic, Biodegradation, 32,127–143, 2021.
  • Lakshmi M.S., Narmadha B., Reddy B.S.R., Enhanced thermal stability and structural characteristics ofdifferent MMT-Clay/epoxy-nanocomposite materials, Polymer Degradation and Stability 93, 201-213, 2008.
  • Leja K., Lewandowicz G., Polymer Biodegradation and Biodegradable Polymers –a Review, Polish J. of Environ. Stud., 19, 255-266, 2010.
  • Mohee R., Unmar G.D., Mudhoo A., Khadoo P., Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions, Waste Management 28, 1624–1629, 2008.
  • Nowak B., Pająk J., Karcz J., Biodegradation of Pre-Aged Modified Polyethylene Films, InTech, 32, 643-670 , 2012 .
  • Okan B.S., Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing, Turkish Journal of Chemistry, 41: 381 – 390, 2017.
  • Özbelge H.Ö., Katırcıoğlu B., Atılgan İ., Özkol E., Anutgan T.A., Anutgan M., Bor Nitrür Üretimi. Ankara: Tübitak Proje, 2008.
  • Ramkumaar G.R., Charles J. Qualitative Analysis of High Density Polyethylene Using FTIR Spectroscopy. s.l. : Asian Journal of Chemistry Vol. 21, No. 6, 4477-4484, 2009.
  • Rathod N., Hatzikiriakos S.G.,The effect of surface energy of boron nitride on polymer processability, Polymer Engineerıng And Science,44,1543-1550, 2004.
  • Rudeekit Y., Comparative Degradation of Biodegradable Plastics by Aerobic Microorganism Using. ASTM D 5338-98(03) and ASTM D 5988-03 as Standard Methods, Thailand Materials Science and Technology Conference, pp10, 2006.
  • Seth M., Hatzikiriakos S. G., Combining Boron Nitride with a Flouroelastomers: An Enhanced Polymer Processing Additive, Journal of Vinyl and Additive Technology, 7, 90-97, 2001.
  • Seyhan A. T., Yurdakul H., Ay N., Turan S., An Advanced Microscopy Study on the Two-Dimensional (2D) Boron Nitride Nano Sheets (BNNSs) Produced via Novel Microfluidization Technique, Conference: FEMMS 2011, Frontiers of Electron Microscopy in Materials Sc., 2011.
  • Seyhan A.T., Göncü Y., Durukan O., Akay A., Ay N., Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites , Journal of Solid State Chemistry, 249, 98–107, 2017.
  • Seyhan A.T., Tuna A., Durukan O., Göncü Y., Turan S., and Ay N., Creep and recovery behaviors of chemically induced grafted low density polyethylene films containing silanized hexagonal boron nitride nanosheets, Materials Express, 8, 1, 2018.
  • Shan H., Zeng C., Zhao C., Zhan H., Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution, Inter. J. Biol. Macromol. 172, 197–209, 2021.
  • Shi X., Wang S., Yang H., Duan X., Dong X., Fabrication and characterization of hexagonal boron nitride powder by spraydrying and calcining– nitriding technology. Jour.of Solid State Chem., 181, 2274-2278, 2008.
  • Shi, Y., Hamsen, C., Jia, X., Kim, Ki K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K.i, Li, H., Yu Juang, Z., Dresselhaus, M. S., Jong Li, L., Kong, J. Synthesis of Few-Layer Hexagonal Boron Synthesis of Few-Layer Hexagonal Boron Deposition. s.l. s.l. : American Chemical Society, Nano Lett. 10, 4134–4139, 2010.
  • Škipina B., Kukrić Z., Milošević M., Luytand A.S., Duško D., Enhancement of the surface dielectric and photodielectric properties of low density Polyethylene By Addıng Emodın. Contemporary Materials, IX−1,96- 105, 2018.
  • Sridharan R., Krishnaswamy V.G., Kumar P.S. Analysis and microbial degradation of Low-Density Polyethylene (LDPE) in Winogradsky column. Environmental Research 201, 111646,1-5, 2021.
  • Tokiwa Y., Calabia B.P., Ugwu C.U., Aiba S., Biodegradability of Plastics, International Journal of Molecular Sciences, 10, 3722-3742, 2009.
  • Wang W., Li Z., Marsden A.J., Bissett M. A., Young R. J.. Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 1-8, 2021.
  • Xu P.P, Zhang S.M., Huang H.D., Xu L., Zhong G.J., Li Z.M., Highly Efficient Three-Dimensional Gas Barrier Network for Biodegradable Nanocomposite Films at Extremely Low Loading Levels of Graphene Oxide Nanosheets. Ind. Eng. Chem. Res. 59, 13, 5818–5827, 2020.
  • Yin L. S., A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Heera Rajandas, Sivachandran Parimannan, Kathiresan Sathasivam,Manickam Ravichandran, s.l. : Polymer Testing ,31, 1094–1099, 2012.
  • Yurdakul H. , Göncü Y., Durukan O., Akay A., Seyhan A.T., Ay N., Turan S., Mikroislemci Dağıtıcı ile Ayrılmıs iki Boyutlu (2-D) Bor Nitrür Nano Tabakalarının (BNNSs) Nanoskopik Kanıtı”, 20. Ulusal Elektron Mikroskopi Kongresi, 25-28 Ekim 2011 Antalya.
  • Yurdakul H., Göncü Y., Durukan O., Akay A., Seyhan A.T., Ay N., Turan S., Nanoscopic characterization of two-dimensional (2D) boron nitridenanosheets (BNNSs) produced by microfluidization, Ceramics International 38, pp. 2187–2193, 2012.

EFFECT OF NANO-LAYERED BORON NITRIDE (BNNS)ADDITION ON BİODEGRADABİLİTY PROPERTİES OF POLYETHYLENE NANOCOPOSIDES

Year 2022, Volume: 30 Issue: 2, 280 - 288, 18.08.2022
https://doi.org/10.31796/ogummf.1078998

Abstract

Polyethylene (PE) is a partial thermoplastic material. Hexagonal boron nitride (hBN) is a layered structure similar to graphite. hBN is used as super solid lubricants, UV radiators or thermal conductivity enhancing agents in composites. The use of nano-layered boron nitride (BNNS), which is obtained by chemical exflation of hBN's micro-sized grains with has superior mechanical and thermal properties, has taken place in the literature as filler for improving polymer barrier, thermal and mechanical properties. However, in the literature on the biodegradability of composite films containing (LDPE)BNNS study hasn't been found. In this study, the determination of biodegradability properties of LDPE nanocomposite films containing BNNS, which were previously prepared by extrusion method and characterization tests were carried out, were investigated. Biodegradability analysis were performed according to ASTM D 5988-03 (Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials after Composting in Soil) between 2-99 days. The humidity ratio was set to 65% for the biometer flasks containing 100 g of soil and 0.2 g of sample. In order for biodegradability to occur, the C:N adjustment was made at a ratio of 15:1 using di ammonium hydrogen phosphate ((NH4)2HPO4) in the soil. The amount of CO2 formed as a result of biodegradability was calculated by analyzing with the titration method. The ratio of the amount of CO2 found by biodegradability analyzes to the theoretical amount of CO2 found as a result of elemental analysis was calculated as percentage (%) biodegradability. The biodegradability of the sample containing 1% BNNS, it was determined to be less than the sample without BNNS and the negative sera nylon, 0.83% and 0.99%, respectively. After the analysis of biodegradability, the XRD peak intensities of LDPE and hBN was determined decrease due to the change in the polymer structure. In the FTIR results, band formations were observed at new wavelengths due to oxidized fragments containing OH groups resulting from biodegradation. With the addition of hBN, it was determined that the barrier, thermal and mechanical properties were improved, the polymer structure became more resistant to microorganisms and increased its service life.

Project Number

1306F175

References

  • Ali M., Abdala A., Large scale synthesis of hexagonal boron nitride nanosheets and their use in thermally conductive polyethylene nanocomposites. Int.J. Energy Res., 1–14, 2021.
  • Akay A., Durukan, O., Göncü, Y., Seyhan, A.T., Ay, N., “Hexagonal boron nitride filled polymer nanofibers producing and characterization via electrospinning technique” Usak University Journal of Material Sciences 1, 35 – 41, 2012 .
  • Ardisson G.B., Tosin M., Barbale M., Degli-Innocenti F., Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach, Frontiers in Microbiology, 710,1-7,2014.
  • Arslan F., Dilsiz N..Flame resistant properties of LDPE/PLA blends containing halogen-free flame retardant., J. Appl. Polym. Scı. 2020, DOI: 10.1002/APP.48960,1-13.
  • ASTM D 5988-03 , Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic Materials After Composting.
  • ASTM D 2974-13, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils.
  • ASTM D 4972-01, Standard Test Method for pH of Soils.
  • Ay N., Göncü Y., Ay G.M., Bor Nitrür, Bor ve Malzeme Bilimi, Boren yayınları, 2020.
  • Balmain, W.H. Bemerkungen über die bildung von verbindungen des Bors und Siliciums mit Stickstoff und gewissen metallen. J. Prakt. Chem., 27, 422–430,1842.
  • Barabaszová K.C., Holešová S., Hundáková M., Kalendová A., Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers, Polymers, 12(12), 2811, 2020.
  • Barra A., Ferreira N.M., Martins M.A., Lazar O., Pantazi A., Jderu A.A., Nunes C., Eco-friendly preparation of electrically conductive chitosan-reduced graphene oxide flexible bionanocomposites for food packaging and biological applications, Compos. Sci. Tec. 173, 53-60, 2019.
  • Behera K., Kumari M., Chang Y.H., Chiu F.C., Chitosan/boron nitride nanobiocomposite films with improved properties for active food packaging applications,International Journal of Biological Macromolecules 186, 135–144, 2021.
  • Berchmans L. J., Bharathi B., Amalajyothi K., Subramanian K., Synthesis of nanocrystalline boron nitride by combustion process, Int. J. of Self-Propagating High-Temperature Synthesis, Vol. 18, 34–37, 2009.
  • Besisaa Dina H.A., Hagrasa Mahmoud A. A., Ewaisa Emad M.M., Ahmeda Yasser M. Z., Zakia Zaki I., Ahmed A., Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors, J.Ceram. Process. Res. vol. 17, 1219-1225, 2016.
  • El-Sayed MT., Rabie GH., Hamed EA., Biodegradation of low density polyethylene (LDPE) using the mixed culture of Aspergillus carbonarius and A. fumigates. s.l. : Environment, Development and Sustainability , 23:14556–14584, 2021.
  • Esmaeili A., Pourbabaee1 A.A., Alikhani H. A., Shabani F., Esmaeili E., Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil, PLoS ONE 8(9): e71720. doi:10.1371/journal.pone.00717,2013.
  • Gao, L., Li,J., Preparation of Nanostructured Hexagonal Boron Nitride Powder. s.l. : J. Am. Ceram. Soc., 86, 1982–84, 2003.
  • Ghatge S., Yang Y., Ahn J.H., Hur H.G. Biodegradation of polyethylene: a briefs., Ghatge et al. Appl Biol Chem,63:27,2-14,2020.
  • Grima S., Bellon-Maurel V., Silvestre F., Feuilloley P., A New Test Method for Determining Biodegradation of Plastic Material Under Controlled Aerobic Conditions in a Soil-Simulation Solid Environment, Journal of Polymers and the Environment, 9, 39–48 , 2001.
  • Hatzikiriakos S. G., Rathod N., Boron nitride based processing aids , Korea-Australia Rheology Journal Vol. 15, No. 4, ,173-178, 2003.
  • Jeon J.-M., Park S-J., Choi T-R., Park J-H., Yang Y-H., Yoon J-J., Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation and Stability 191, 1-8, 2021.
  • Joy J., George.E., Haritha P., Thomas S., Anas S.. An overview of boron nitride based polymer nanocomposites. J Polym Sci. 58, 3115–3141, 2020.
  • Katatchlow I.B., Yip F., Hatzikiriakos S. K., The effect of boron nitride on tehe rheology and processing of polyolefins, Rheol açta, 39, 583-594, 2000.
  • Khandare S.D., Chaudhary D.R., Jha B., Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic, Biodegradation, 32,127–143, 2021.
  • Lakshmi M.S., Narmadha B., Reddy B.S.R., Enhanced thermal stability and structural characteristics ofdifferent MMT-Clay/epoxy-nanocomposite materials, Polymer Degradation and Stability 93, 201-213, 2008.
  • Leja K., Lewandowicz G., Polymer Biodegradation and Biodegradable Polymers –a Review, Polish J. of Environ. Stud., 19, 255-266, 2010.
  • Mohee R., Unmar G.D., Mudhoo A., Khadoo P., Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions, Waste Management 28, 1624–1629, 2008.
  • Nowak B., Pająk J., Karcz J., Biodegradation of Pre-Aged Modified Polyethylene Films, InTech, 32, 643-670 , 2012 .
  • Okan B.S., Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing, Turkish Journal of Chemistry, 41: 381 – 390, 2017.
  • Özbelge H.Ö., Katırcıoğlu B., Atılgan İ., Özkol E., Anutgan T.A., Anutgan M., Bor Nitrür Üretimi. Ankara: Tübitak Proje, 2008.
  • Ramkumaar G.R., Charles J. Qualitative Analysis of High Density Polyethylene Using FTIR Spectroscopy. s.l. : Asian Journal of Chemistry Vol. 21, No. 6, 4477-4484, 2009.
  • Rathod N., Hatzikiriakos S.G.,The effect of surface energy of boron nitride on polymer processability, Polymer Engineerıng And Science,44,1543-1550, 2004.
  • Rudeekit Y., Comparative Degradation of Biodegradable Plastics by Aerobic Microorganism Using. ASTM D 5338-98(03) and ASTM D 5988-03 as Standard Methods, Thailand Materials Science and Technology Conference, pp10, 2006.
  • Seth M., Hatzikiriakos S. G., Combining Boron Nitride with a Flouroelastomers: An Enhanced Polymer Processing Additive, Journal of Vinyl and Additive Technology, 7, 90-97, 2001.
  • Seyhan A. T., Yurdakul H., Ay N., Turan S., An Advanced Microscopy Study on the Two-Dimensional (2D) Boron Nitride Nano Sheets (BNNSs) Produced via Novel Microfluidization Technique, Conference: FEMMS 2011, Frontiers of Electron Microscopy in Materials Sc., 2011.
  • Seyhan A.T., Göncü Y., Durukan O., Akay A., Ay N., Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites , Journal of Solid State Chemistry, 249, 98–107, 2017.
  • Seyhan A.T., Tuna A., Durukan O., Göncü Y., Turan S., and Ay N., Creep and recovery behaviors of chemically induced grafted low density polyethylene films containing silanized hexagonal boron nitride nanosheets, Materials Express, 8, 1, 2018.
  • Shan H., Zeng C., Zhao C., Zhan H., Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution, Inter. J. Biol. Macromol. 172, 197–209, 2021.
  • Shi X., Wang S., Yang H., Duan X., Dong X., Fabrication and characterization of hexagonal boron nitride powder by spraydrying and calcining– nitriding technology. Jour.of Solid State Chem., 181, 2274-2278, 2008.
  • Shi, Y., Hamsen, C., Jia, X., Kim, Ki K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K.i, Li, H., Yu Juang, Z., Dresselhaus, M. S., Jong Li, L., Kong, J. Synthesis of Few-Layer Hexagonal Boron Synthesis of Few-Layer Hexagonal Boron Deposition. s.l. s.l. : American Chemical Society, Nano Lett. 10, 4134–4139, 2010.
  • Škipina B., Kukrić Z., Milošević M., Luytand A.S., Duško D., Enhancement of the surface dielectric and photodielectric properties of low density Polyethylene By Addıng Emodın. Contemporary Materials, IX−1,96- 105, 2018.
  • Sridharan R., Krishnaswamy V.G., Kumar P.S. Analysis and microbial degradation of Low-Density Polyethylene (LDPE) in Winogradsky column. Environmental Research 201, 111646,1-5, 2021.
  • Tokiwa Y., Calabia B.P., Ugwu C.U., Aiba S., Biodegradability of Plastics, International Journal of Molecular Sciences, 10, 3722-3742, 2009.
  • Wang W., Li Z., Marsden A.J., Bissett M. A., Young R. J.. Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 1-8, 2021.
  • Xu P.P, Zhang S.M., Huang H.D., Xu L., Zhong G.J., Li Z.M., Highly Efficient Three-Dimensional Gas Barrier Network for Biodegradable Nanocomposite Films at Extremely Low Loading Levels of Graphene Oxide Nanosheets. Ind. Eng. Chem. Res. 59, 13, 5818–5827, 2020.
  • Yin L. S., A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Heera Rajandas, Sivachandran Parimannan, Kathiresan Sathasivam,Manickam Ravichandran, s.l. : Polymer Testing ,31, 1094–1099, 2012.
  • Yurdakul H. , Göncü Y., Durukan O., Akay A., Seyhan A.T., Ay N., Turan S., Mikroislemci Dağıtıcı ile Ayrılmıs iki Boyutlu (2-D) Bor Nitrür Nano Tabakalarının (BNNSs) Nanoskopik Kanıtı”, 20. Ulusal Elektron Mikroskopi Kongresi, 25-28 Ekim 2011 Antalya.
  • Yurdakul H., Göncü Y., Durukan O., Akay A., Seyhan A.T., Ay N., Turan S., Nanoscopic characterization of two-dimensional (2D) boron nitridenanosheets (BNNSs) produced by microfluidization, Ceramics International 38, pp. 2187–2193, 2012.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Zuhal Yılmaz 0000-0002-2280-6326

Nuran Ay 0000-0002-2228-9904

Project Number 1306F175
Early Pub Date August 19, 2022
Publication Date August 18, 2022
Acceptance Date May 23, 2022
Published in Issue Year 2022 Volume: 30 Issue: 2

Cite

APA Yılmaz, Z., & Ay, N. (2022). POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(2), 280-288. https://doi.org/10.31796/ogummf.1078998
AMA Yılmaz Z, Ay N. POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ. ESOGÜ Müh Mim Fak Derg. August 2022;30(2):280-288. doi:10.31796/ogummf.1078998
Chicago Yılmaz, Zuhal, and Nuran Ay. “POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, no. 2 (August 2022): 280-88. https://doi.org/10.31796/ogummf.1078998.
EndNote Yılmaz Z, Ay N (August 1, 2022) POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 2 280–288.
IEEE Z. Yılmaz and N. Ay, “POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ”, ESOGÜ Müh Mim Fak Derg, vol. 30, no. 2, pp. 280–288, 2022, doi: 10.31796/ogummf.1078998.
ISNAD Yılmaz, Zuhal - Ay, Nuran. “POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/2 (August 2022), 280-288. https://doi.org/10.31796/ogummf.1078998.
JAMA Yılmaz Z, Ay N. POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2022;30:280–288.
MLA Yılmaz, Zuhal and Nuran Ay. “POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 30, no. 2, 2022, pp. 280-8, doi:10.31796/ogummf.1078998.
Vancouver Yılmaz Z, Ay N. POLİETİLEN NANOKOMPOZİTLERDE NANO TABAKALI BOR NİTRÜR (BNNS) TAKVİYESİNİN BİYOBOZUNURLUĞA ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2022;30(2):280-8.

20873  13565  13566 15461  13568    14913