Research Article
BibTex RIS Cite

ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS

Year 2023, Volume: 31 Issue: 2, 675 - 688, 21.08.2023
https://doi.org/10.31796/ogummf.1224081

Abstract

The settlements occurred in building foundations depend on many soil parameters. Thus, these parameters make the solution both difficult and complex during the calculating process. Therefore, finite element programs use the subgrade reaction coefficient to facilitate the foundation solution. Two different methods, which are Winkler method and Pseudo coupled method, are used in the basic solutions with the coefficient of subgrade reaction. While the Winkler method can be solved with a single field, the pseudo method can be solved with 2 or more fields. In this study, a 10 story building with a 36 m x 36 m square foundation was separately designed on four different sand soils. Two of these soils are classified as C and the others are classified as D according to Eurocode 8. The foundation of this building built on four different soils was divided into six different areas (one region, two regions, three regions, five regions, seven regions, 10 regions). Consequently, 24 analyzes were performed by using the ETABS program. According to the results obtained from these analyzes, while it is appropriate to use the Winkler method in weak sand soils for rigid foundation acceptance, it is more appropriate to use the Pseudo-coupled method in dense sand soils. Pseudo-coupled method should be used in flexible foundation solutions built on weak sand soils. The Winkler method should be used for flexible foundations built on dense sand soils. In the Pseudo-coupled method, the highest settlements were obtained in the two-region solutions. An optimum number of fields was found to be 7 for Pseudo-coupled method.

References

  • ACI 336.2R-88 (2002) suggested analysis and design procedures for combined footings and mats, Report by ACI Committee 336
  • Bhartiya, P., Chakraborty, T., & Basu, D. (2020). Nonlinear subgrade modulus of sandy soils for analysis of piled raft foundations. Computers and Geotechnics, 118, 103350.
  • Cheung Y. K., Zienkiewicz O. C., (1965), Plates and tanks on elastic foundations-an application of finite elementmethod, Int .J. Solids Struct.,1,451–461.
  • Costa J. A., Brebia C. A., (1985), Bending of plates on elastic foundation using the boundary element method, Proc.2ndInt.Conf.ªariational Methods in Engineering, University of Southampton, 1985, pp. 523–533.
  • El-garhy, B., Osman, M. (2002). Winkler coefficient for Beams on Elastic Foundation. ERJ. Engineering Research Journal, 25(3), 1-18.
  • Fox E. N., (1948), The mean elastic settlement of a uniformly loaded area at a depth below the ground surface.Proc.2nd Int. Conf. on Soil Mechanics and Foundation Engg., Rotterdom, Vol 1, 1948, pp. 129–132.2.
  • Fraser R. A., Wardle L. J., (1976), Numerical analysis of rectangular rafts on layered foundations, Geotechnique.,26(4),613–630.
  • Horvath, J.S., (1993), Subgrade Modeling Jr Soil-Structure Interaction Analysis of Horizontal Foundation Elements, Manhattan College Research Report No. Celge-93-I, Manhattan College, New York.
  • Katsikadelis J. T., Armenakas A. E., (1984), Analysis of clamped plates on elastic foundation by BIE method , J.Appl.Mech.,51,574–586.
  • Loukidis D., Tamiolakis G.P., 2017, Spatial distribution of Winkler spring stiffness for rectangular mat foundation analysis, Eng Struct, 153 (2017), pp. 443-459
  • Ma, C.M., Chen, Y.Y. (2019). Research on the differential settlements of mat foundations. IOP Conference Series: Earth and Environmental Science, 351(1).
  • Mandal, J. J., & Ghosh, D. P. (1999). Prediction of elastic settlement of rectangular raft foundation—a coupled FE–BE approach. International journal for numerical and analytical methods in geomechanics, 23(3), 263-273.
  • Modak, R., & Singh, B. (2022). A parametric study of large piled raft foundations on clay soil. Ocean Engineering, 262, 112251.
  • Özer Ö., Yüksel, B., (2021), Comparison of the effect of foundation analysis methods on structural analysis results of tall buildings. International Advanced Researches and Engineering Journal, 5(1), 106-112.
  • Prabhu, P., & Mutalikdesai, V. G. (2023). Soil-Solid Raft Interaction Analysis Subjected To Seismic Forces. //doi.org/10.21203/rs.3.rs-2437896/v1
  • Rashedul H. Chowdhury, Mavinakere E. Raghunandan AM (2013) Study on the analysis of mat foundation using different approach. Icsdec 818–825
  • Scott, R. F. (1984). “Foundation analysis”, 143. London: Prentice Hall International.
  • Subramanian, K.V., Kashikar, A.V., Nath, C., and Shintre, C.C. (2005). “Analysis of raft foundations for spent fuel pool in nuclear facilities.” Proc. 18th Intl. Conference on Structural Mechanics in Reactor Technology, China: 3165- 3178.
  • Teli, S., Kundhani, P., Choksi, V., Sinha, P., & Iyer, K. K. (2020). Analytical Study on the Influence of Rigidity of Foundation and Modulus of Subgrade Reaction on Behaviour of Raft Foundation. In Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019 Volume 2 (pp. 181-194). Springer Singapore.
  • Teodoru IB, Toma IO (2009) Numerical analyses of plate loading test. The Bulletin of the Polytechnic Institute of Jassy, Construction. Architecture Section, Romaina, Section LV (LIX), 57–65
  • Todorovska, M. I., Hayir, A., & Trifunac, M. D. (2001). Flexible versus rigid foundation models of soil-structure interaction: incident SH-waves. In Proc. 2nd US-Japan Workshop on Soil-Structure Interaction.
  • Yao Z. E. and Zhang J. R., (1985). Assessment of the effects of structure/raft/soil interaction. in Proceedings of the 5th international conference on Numerical Methods in Geomechanics, Japan Soc of Civil Engineers, pp. 813–819, A. A. Balkema, Nagoya University, Nagoya, Japan.
  • Zilch K., (1993). Soil - structure interaction, in Proceedings of the safety and performance concepts: contributions to the workshop-sessions “model uncertainties”, “new concepts” and “full scale testing”, organized by task groups of commission 1, pp. 73–98, Comit´e Euro-International du B´eton (CEB), London, United Kingdom.

KUMLU ZEMİN ÜZERİNDEKİ RADYE TEMELLERİN WİNKLER VE PSÜDO-EŞLENİK YÖNTEMLERİ İLE ANALİZİ

Year 2023, Volume: 31 Issue: 2, 675 - 688, 21.08.2023
https://doi.org/10.31796/ogummf.1224081

Abstract

Bina temellerinde meydana gelen oturmalar birçok zemin parametresine bağlıdır. Dolayısıyla bu parametreler, hesaplama sürecinde çözümü hem zor hem de karmaşık hale getirmektedir. Bu nedenle, sonlu elemanlar programları, temel çözümünü kolaylaştırmak için zeminin yatak katsayısını kullanır. Zemin yatak katsayısına sahip temel, çözümlerde Winkler yöntemi ve Psüdo-Eşlenik yöntem olmak üzere iki farklı metot kullanılarak çözülmektedir. Winkler yöntemi tek bir alanla çözülebilirken, Psüdo-Eşlenik yöntem 2 veya daha fazla alanla çözülebilir. Bu çalışmada dört farklı kum zemin üzerinde, 36 m x 36 m ölçülerinde kare temelli 10 katlı bir bina ayrı ayrı tasarlanmıştır. Bu zeminlerden ikisi Eurocode 8'e göre C, diğerleri D sınıfındadır. Dört farklı zemin üzerine inşa edilen bu binanın temeli altı farklı bölgeye (bir bölge, iki bölge, üç bölge, beş bölge, yedi bölge, 10 bölge) bölünmüştür. Sonuç olarak, 24 adet analiz ETABS programını kullanarak yapılmıştır. Bu analizler elde edilen sonuçlara göre, rijit temel kabulü için zayıf kum zeminlerde Winkler metodu kullanılması uygun iken, sıkı kum zeminlerde ise Pseudo-coupled metodunun kullanılması daha uygundur. Zayıf kum zeminler üzerine inşa edilen esnek temel çözümlerinde Psüdo-Eşlenik yöntemi kullanılmalıdır. Sıkı kum zeminler üzerine inşa edilen esnek temeller için ise Winkler metodu kullanılmalıdır. Psüdo-Eşlenik yöntemde en yüksek oturmalar iki bölgeli çözümlerde elde edilmiştir. Psüdo-Eşlenik yöntemi için optimum alan sayısı 7 olarak bulunmuştur.

References

  • ACI 336.2R-88 (2002) suggested analysis and design procedures for combined footings and mats, Report by ACI Committee 336
  • Bhartiya, P., Chakraborty, T., & Basu, D. (2020). Nonlinear subgrade modulus of sandy soils for analysis of piled raft foundations. Computers and Geotechnics, 118, 103350.
  • Cheung Y. K., Zienkiewicz O. C., (1965), Plates and tanks on elastic foundations-an application of finite elementmethod, Int .J. Solids Struct.,1,451–461.
  • Costa J. A., Brebia C. A., (1985), Bending of plates on elastic foundation using the boundary element method, Proc.2ndInt.Conf.ªariational Methods in Engineering, University of Southampton, 1985, pp. 523–533.
  • El-garhy, B., Osman, M. (2002). Winkler coefficient for Beams on Elastic Foundation. ERJ. Engineering Research Journal, 25(3), 1-18.
  • Fox E. N., (1948), The mean elastic settlement of a uniformly loaded area at a depth below the ground surface.Proc.2nd Int. Conf. on Soil Mechanics and Foundation Engg., Rotterdom, Vol 1, 1948, pp. 129–132.2.
  • Fraser R. A., Wardle L. J., (1976), Numerical analysis of rectangular rafts on layered foundations, Geotechnique.,26(4),613–630.
  • Horvath, J.S., (1993), Subgrade Modeling Jr Soil-Structure Interaction Analysis of Horizontal Foundation Elements, Manhattan College Research Report No. Celge-93-I, Manhattan College, New York.
  • Katsikadelis J. T., Armenakas A. E., (1984), Analysis of clamped plates on elastic foundation by BIE method , J.Appl.Mech.,51,574–586.
  • Loukidis D., Tamiolakis G.P., 2017, Spatial distribution of Winkler spring stiffness for rectangular mat foundation analysis, Eng Struct, 153 (2017), pp. 443-459
  • Ma, C.M., Chen, Y.Y. (2019). Research on the differential settlements of mat foundations. IOP Conference Series: Earth and Environmental Science, 351(1).
  • Mandal, J. J., & Ghosh, D. P. (1999). Prediction of elastic settlement of rectangular raft foundation—a coupled FE–BE approach. International journal for numerical and analytical methods in geomechanics, 23(3), 263-273.
  • Modak, R., & Singh, B. (2022). A parametric study of large piled raft foundations on clay soil. Ocean Engineering, 262, 112251.
  • Özer Ö., Yüksel, B., (2021), Comparison of the effect of foundation analysis methods on structural analysis results of tall buildings. International Advanced Researches and Engineering Journal, 5(1), 106-112.
  • Prabhu, P., & Mutalikdesai, V. G. (2023). Soil-Solid Raft Interaction Analysis Subjected To Seismic Forces. //doi.org/10.21203/rs.3.rs-2437896/v1
  • Rashedul H. Chowdhury, Mavinakere E. Raghunandan AM (2013) Study on the analysis of mat foundation using different approach. Icsdec 818–825
  • Scott, R. F. (1984). “Foundation analysis”, 143. London: Prentice Hall International.
  • Subramanian, K.V., Kashikar, A.V., Nath, C., and Shintre, C.C. (2005). “Analysis of raft foundations for spent fuel pool in nuclear facilities.” Proc. 18th Intl. Conference on Structural Mechanics in Reactor Technology, China: 3165- 3178.
  • Teli, S., Kundhani, P., Choksi, V., Sinha, P., & Iyer, K. K. (2020). Analytical Study on the Influence of Rigidity of Foundation and Modulus of Subgrade Reaction on Behaviour of Raft Foundation. In Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019 Volume 2 (pp. 181-194). Springer Singapore.
  • Teodoru IB, Toma IO (2009) Numerical analyses of plate loading test. The Bulletin of the Polytechnic Institute of Jassy, Construction. Architecture Section, Romaina, Section LV (LIX), 57–65
  • Todorovska, M. I., Hayir, A., & Trifunac, M. D. (2001). Flexible versus rigid foundation models of soil-structure interaction: incident SH-waves. In Proc. 2nd US-Japan Workshop on Soil-Structure Interaction.
  • Yao Z. E. and Zhang J. R., (1985). Assessment of the effects of structure/raft/soil interaction. in Proceedings of the 5th international conference on Numerical Methods in Geomechanics, Japan Soc of Civil Engineers, pp. 813–819, A. A. Balkema, Nagoya University, Nagoya, Japan.
  • Zilch K., (1993). Soil - structure interaction, in Proceedings of the safety and performance concepts: contributions to the workshop-sessions “model uncertainties”, “new concepts” and “full scale testing”, organized by task groups of commission 1, pp. 73–98, Comit´e Euro-International du B´eton (CEB), London, United Kingdom.
There are 23 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

İlyas Özkan 0000-0001-9660-8229

Yavuz Yenginar 0000-0002-6916-4068

Ali Serdar Ecemiş 0000-0002-7332-3738

Early Pub Date August 21, 2023
Publication Date August 21, 2023
Acceptance Date June 12, 2023
Published in Issue Year 2023 Volume: 31 Issue: 2

Cite

APA Özkan, İ., Yenginar, Y., & Ecemiş, A. S. (2023). ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(2), 675-688. https://doi.org/10.31796/ogummf.1224081
AMA Özkan İ, Yenginar Y, Ecemiş AS. ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS. ESOGÜ Müh Mim Fak Derg. August 2023;31(2):675-688. doi:10.31796/ogummf.1224081
Chicago Özkan, İlyas, Yavuz Yenginar, and Ali Serdar Ecemiş. “ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 2 (August 2023): 675-88. https://doi.org/10.31796/ogummf.1224081.
EndNote Özkan İ, Yenginar Y, Ecemiş AS (August 1, 2023) ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 2 675–688.
IEEE İ. Özkan, Y. Yenginar, and A. S. Ecemiş, “ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 2, pp. 675–688, 2023, doi: 10.31796/ogummf.1224081.
ISNAD Özkan, İlyas et al. “ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/2 (August 2023), 675-688. https://doi.org/10.31796/ogummf.1224081.
JAMA Özkan İ, Yenginar Y, Ecemiş AS. ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS. ESOGÜ Müh Mim Fak Derg. 2023;31:675–688.
MLA Özkan, İlyas et al. “ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 2, 2023, pp. 675-88, doi:10.31796/ogummf.1224081.
Vancouver Özkan İ, Yenginar Y, Ecemiş AS. ANALYSIS OF RAFT FOUNDATION ON SANDY SOILS BY WINKLER AND PSEUDO-COUPLED METHODS. ESOGÜ Müh Mim Fak Derg. 2023;31(2):675-88.

20873  13565  13566 15461  13568    14913