ALEV SPREY PİROLİZİ İLE İÇİ BOŞ Al2O3 KÜRECİKLERİN SENTEZLENMESİNDE BAŞLANGIÇ KİMYASALI OLARAK KULLANILAN EMÜLSİYONLARIN MORFOLOJİ ÜZERİNE ETKİLERİ
Year 2023,
Volume: 31 Issue: 3, 787 - 794, 16.12.2023
Ertuğrul İşlek
,
Hüseyin Boğaç Poyraz
,
İsmail Özgür Özer
Abstract
Bu çalışmada, Alev Sprey Pirolizi (ASP) metodunun içi boş Al2O3 küreciklerin sentezinde kullanılabilirliği incelenmiştir. Nihai partikül sentezini sağlayacak başlangıç kimyasalı reaktöre emülsiyon formunda beslenmiştir. Emülsiyonlar, alüminyum nitrat sulu çözeltilerinin, hacimce %9,4 ile %18,8 arasında değişen konsantrasyonlarda yüzey etken madde (PEG-30 dipolihidroksistearat) içeren ksilen sisteminde dağıtılması ile elde edilmiştir. Nitrat çözeltisi/ksilen oranı 1:2 – 1:4 aralığında değiştirilmiş ve çalışılan her oranda artan PEG-30 miktarının dağılan faz boyutunu azalttığı ve emülsiyon kararlığını arttırdığı gözlenmiştir. Hazırlanan emülsiyonlar sabit yanma koşullarında reaktöre beslenmiştir. Partiküllerin fiziksel ve kimyasal analizleri taramalı elektron mikroskobu ile yapılmıştır. Analizlerde, kullanılan her bir sistem için, dolu partiküller ile birlikte içi boş küreciklerin bir arada bulunduğu heterojen bir yapı gözlenmiştir. Emülsiyonlardaki normal dağılıma göre daha geniş ve bimodal dağılıma sahip partiküller, emülsiyon üniform yapısının reaktörde korunamadığını ve/veya oluşan farklı yanma koşullarının damlacıktan-partiküle ve gazdan-partiküle olmak üzere iki farklı mekanizmaya sebep olduğunu göstermiştir. Bütünlüğünü koruyan içi boş partiküllerin belirli boyutun altında oluşabildiği, iri boş partiküllerin ise deforme oldukları gözlenmiştir.
Thanks
Bu çalışma, Türkiye Bilimsel Teknik Araştırma Kurumu (TÜBİTAK) tarafından desteklenen 315M528 numaralı proje kapsamında tasarlanıp imal edilmiş Alev Sprey Pirolizi reaktörüyle ve yapılan çalışmalardan elde edilen birikimle gerçekleşmiştir. Yazarlar, deneysel çalışmalara katkıda bulunun Elif KÜÇÜKKARDEŞ’e, Sarp Yalın VURAL’a, Sema ALTUN’a ve Ahmet Furkan VAYNİ’ye teşekkürlerini sunar.
References
- Cabot, A., Ibanez, M., Guardia, P. & Alivisatos, A.P. (2009). Reaction regimes on the synthesis of hollow particles by the kirkendall effect. Journal of American Chemical Society, 131, 11326-11328. doi: https://doi.org/10.1021/ja903751p
- Cabot, A., Smith, R.K., Yin, Y., Zheng, H., Reinhard, B.M., Liu, H. & Alivisatos, A.P. (2008). Sulfidation of cadmium at the nanoscale. ACS Nano, 2 (7), 1452-1458. doi: https://doi.org/10.1021/nn800270m
- Caruso, F., Caruso, R.A. & Möhwald, H. (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 282 (5391), 1111-1114. doi: 10.1126/science.282.5391.1111
- Chen, J.F., Ding, H.M., Wang, J.X. & Shao, L. (2004). Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials, 25, 723-727. doi: https://doi.org/10.1016/S0142-9612(03)00566-0
- Fuji, M., Han, Y.S. & Takai C. (2013). Synthesis and applications of hollow particles. KONA Powder and Particle Journal, 30, 47-68. doi: https://doi.org/10.14356/kona.2013009
- Ha, D.H., Islam, M. A. & Robinson, R.D. (2012). Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black. Nano Letters, 12, 5122-5130. doi: https://doi.org/10.1021/nl3019559
- Imhof A. (2001). Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir, 17, 3579-3585. doi: https://doi.org/10.1021/la001604j
- Lee, Y., Jo, M.R., Song, K., Nam, K.M., Park, J.T. & Kang, Y.M. (2012). Hollow Sn−SnO2 nanocrystal/graphite composites and their lithium storage properties. ACS Applied Materials and Interfaces, 4, 3459-3464. doi: 10.1021/am3005237
- Madler, L. (2004). Liquid-fed aerosol reactors for one-step synthesis of nano-structured particles. KONA Powder and Particle Journal, 22, 107-120. doi: https://doi.org/10.14356/kona.2004014
- Mel A.A.E., Nakamura, R. & Bittencourt, C. (2015). The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 6, 1348-1361. doi: 10.3762/bjnano.6.139
- Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis & N.S. Schaak, R.E. (2013). Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 135, 9267-9270. doi: 10.1021/ja403440e
- Prieto, G., Tüysüz, H., Duyckaerts, N., Knossalla, J., Wang, G.H. & Schüth, F. (2016). Hollow nano- and microstructures as catalysts. Chemical Reviews, 116 (22), 14056-14119. doi: 10.1021/acs.chemrev.6b00374
- Sandberg, L.I.C., Gao, T., Jelle, B.P. & Gustavsen, A. (2013). Synthesis of hollow silica nanospheres by sacrificial polystyrene templates for thermal insulation applications. Advances in Materials Science and Engineering, 2013, 1-6. doi: https://doi.org/10.1155/2013/483651
- Sharma, J. & Polizos G. Hollow silica particles: recent progress and future perspectives (2020). Nanomaterials, 10 (8), 1-22. doi: https://doi.org/10.1155/2013/483651
- Strobel, R., Baiker, A. & Pratsinis, S.E. (2006). Aerosol flame synthesis of catalysts. Advanced Powder Technology, 17 (5), 457-480. doi: https://doi.org/10.1163/156855206778440525
- Strobel, R. & Pratsinis, S.E. (2011). Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Phys. Chem. Chem. Phys., 13, 9246-9252. doi: 10.1039/c0cp01416h
- Tani, T., Watanabe, N. & Takatori, K. (2003). Morphology of oxide particles made by the emulsion combustion method. Journal of the American Ceramic Society, 86 (6), 898-904. doi: https://doi.org/10.1111/j.1151-2916.2003.tb03394.x
- Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. & Serna, C.J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36, 182-197. doi: https://doi.org/10.1088/0022-3727/36/13/202
- Teoh, W.Y. (2007). Flame spray pyrolysis of catalyst nanoparticles for photocatalytic mineralisation of organics and fischer-tropsch synthesis (Doctoral dissertation, The University of New South Wales, Australia). Retrieved from https://doi.org/10.26190/unsworks/17252
- Teoh, W.Y., Amal, R. & Madler, L. (2010). Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324-1347. doi: https://doi.org/10.1039/C0NR00017E
- Vais, R.D. & Heli, H. (2016). The kirkendall effect: its efficacy in the formation of hollow nanostructures. Journal of Biology and Today’s World, 5 (8), 137-149. doi: 10.15412/J.JBTW.01050802
- Wang, W., Dahl, M. & Yin, Y. (2013). Hollow nanocrystals through the nanoscale kirkendall effect. Chemistry of Materials, 25 (8), 1179-1189. doi: https://doi.org/10.1021/cm3030928
- Wegner, K., Schimmöller, B., Thiebaut, B., Fernandez, C. & Rao, T.N. (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. KONA Powder and Particle Journal, 29, 251-265. doi: https://doi.org/10.14356/kona.2011025
EFFECTS OF EMULSION PRECURSORS ON THE MORPHOLOGY OF HOLLOW Al2O3 PARTICLES SYNTHESIZED BY FLAME SPRAY PYROLYSIS
Year 2023,
Volume: 31 Issue: 3, 787 - 794, 16.12.2023
Ertuğrul İşlek
,
Hüseyin Boğaç Poyraz
,
İsmail Özgür Özer
Abstract
In this study, Flame Spray Pyrolysis (ASP) method was used to synthesize hollow Al2O3 particles. The precursors were fed to the reactor in emulsion form. Emulsions were obtained by dispersing aluminum nitrate aqueous solutions in a xylene system containing surfactant (PEG-30 dipolyhydroxystearate) at concentrations ranging from 9.4 vol. % to 18.8 vol. %. The nitrate solution/xylene ratio was changed in the range of 1:2 – 1:4. It was observed that increasing amount of PEG-30 in all emulsion concentrations decreased the dispersed phase size and increased the emulsion stability. Prepared emulsions were fed to the reactor under constant combustion conditions. Physical and chemical analyzes of the particles were made by scanning electron microscopy. In the analyses, a heterogeneous structure consisting of solid and hollow particles was observed. Particles with a larger and bimodal distribution than the normal distribution in emulsions showed that the uniform structure of the emulsion could not be maintained in the reactor. These results may also indicate a large temperature gradient in the reactor causing two different mechanisms: droplet-to-particle and gas-to-particle. It has been observed that hollow particles that maintain their integrity can form below a certain size, while large hollow particles are deformed.
References
- Cabot, A., Ibanez, M., Guardia, P. & Alivisatos, A.P. (2009). Reaction regimes on the synthesis of hollow particles by the kirkendall effect. Journal of American Chemical Society, 131, 11326-11328. doi: https://doi.org/10.1021/ja903751p
- Cabot, A., Smith, R.K., Yin, Y., Zheng, H., Reinhard, B.M., Liu, H. & Alivisatos, A.P. (2008). Sulfidation of cadmium at the nanoscale. ACS Nano, 2 (7), 1452-1458. doi: https://doi.org/10.1021/nn800270m
- Caruso, F., Caruso, R.A. & Möhwald, H. (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 282 (5391), 1111-1114. doi: 10.1126/science.282.5391.1111
- Chen, J.F., Ding, H.M., Wang, J.X. & Shao, L. (2004). Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials, 25, 723-727. doi: https://doi.org/10.1016/S0142-9612(03)00566-0
- Fuji, M., Han, Y.S. & Takai C. (2013). Synthesis and applications of hollow particles. KONA Powder and Particle Journal, 30, 47-68. doi: https://doi.org/10.14356/kona.2013009
- Ha, D.H., Islam, M. A. & Robinson, R.D. (2012). Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black. Nano Letters, 12, 5122-5130. doi: https://doi.org/10.1021/nl3019559
- Imhof A. (2001). Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir, 17, 3579-3585. doi: https://doi.org/10.1021/la001604j
- Lee, Y., Jo, M.R., Song, K., Nam, K.M., Park, J.T. & Kang, Y.M. (2012). Hollow Sn−SnO2 nanocrystal/graphite composites and their lithium storage properties. ACS Applied Materials and Interfaces, 4, 3459-3464. doi: 10.1021/am3005237
- Madler, L. (2004). Liquid-fed aerosol reactors for one-step synthesis of nano-structured particles. KONA Powder and Particle Journal, 22, 107-120. doi: https://doi.org/10.14356/kona.2004014
- Mel A.A.E., Nakamura, R. & Bittencourt, C. (2015). The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 6, 1348-1361. doi: 10.3762/bjnano.6.139
- Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis & N.S. Schaak, R.E. (2013). Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 135, 9267-9270. doi: 10.1021/ja403440e
- Prieto, G., Tüysüz, H., Duyckaerts, N., Knossalla, J., Wang, G.H. & Schüth, F. (2016). Hollow nano- and microstructures as catalysts. Chemical Reviews, 116 (22), 14056-14119. doi: 10.1021/acs.chemrev.6b00374
- Sandberg, L.I.C., Gao, T., Jelle, B.P. & Gustavsen, A. (2013). Synthesis of hollow silica nanospheres by sacrificial polystyrene templates for thermal insulation applications. Advances in Materials Science and Engineering, 2013, 1-6. doi: https://doi.org/10.1155/2013/483651
- Sharma, J. & Polizos G. Hollow silica particles: recent progress and future perspectives (2020). Nanomaterials, 10 (8), 1-22. doi: https://doi.org/10.1155/2013/483651
- Strobel, R., Baiker, A. & Pratsinis, S.E. (2006). Aerosol flame synthesis of catalysts. Advanced Powder Technology, 17 (5), 457-480. doi: https://doi.org/10.1163/156855206778440525
- Strobel, R. & Pratsinis, S.E. (2011). Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Phys. Chem. Chem. Phys., 13, 9246-9252. doi: 10.1039/c0cp01416h
- Tani, T., Watanabe, N. & Takatori, K. (2003). Morphology of oxide particles made by the emulsion combustion method. Journal of the American Ceramic Society, 86 (6), 898-904. doi: https://doi.org/10.1111/j.1151-2916.2003.tb03394.x
- Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. & Serna, C.J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36, 182-197. doi: https://doi.org/10.1088/0022-3727/36/13/202
- Teoh, W.Y. (2007). Flame spray pyrolysis of catalyst nanoparticles for photocatalytic mineralisation of organics and fischer-tropsch synthesis (Doctoral dissertation, The University of New South Wales, Australia). Retrieved from https://doi.org/10.26190/unsworks/17252
- Teoh, W.Y., Amal, R. & Madler, L. (2010). Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324-1347. doi: https://doi.org/10.1039/C0NR00017E
- Vais, R.D. & Heli, H. (2016). The kirkendall effect: its efficacy in the formation of hollow nanostructures. Journal of Biology and Today’s World, 5 (8), 137-149. doi: 10.15412/J.JBTW.01050802
- Wang, W., Dahl, M. & Yin, Y. (2013). Hollow nanocrystals through the nanoscale kirkendall effect. Chemistry of Materials, 25 (8), 1179-1189. doi: https://doi.org/10.1021/cm3030928
- Wegner, K., Schimmöller, B., Thiebaut, B., Fernandez, C. & Rao, T.N. (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. KONA Powder and Particle Journal, 29, 251-265. doi: https://doi.org/10.14356/kona.2011025