Review
BibTex RIS Cite

INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS

Year 2023, Volume: 31 Issue: 4, 975 - 987, 22.12.2023
https://doi.org/10.31796/ogummf.1205232

Abstract

Microbial biopolymers are products of living organisms include microorganism, plant etc. They could be biodegradable, biocompatible, non or low toxic and show anti-inflammatory and antimicrobial activity. They have been grouped in polysaccharide, lipid and protein. Microbial biopolymers are important source as biomaterials in variable sectors consist of biomedical applications, tissue engineering, food industry, wound repair system, and also drug delivery. Therefore, the selection criteria are vital for these areas because these materials use for shaping of medical implants. These criteria should be elected passive and inert for safe and long-term implant in medical applications.
In this review, biopolymers derivatives from microorganisms are handled especially alginate, chitin, chitosan, levan, polyhydroxalkanoates, hyaluronic acid and this review has highlighted the potential of microbial biopolymers in the field of biomedical research. For biomedical applications, the economic factors, biosynthesis, and characteristics of these polymers have been examined. The ability of microbial biopolymers to be extraordinarily variable and to have induced features makes them advantageous for solving issues in biomedical research. Microbial biopolymers can be used to arrange sustainable processes in a range of medical applications, including tissue engineering, the development of medical devices, drug delivery, cancer therapy, and wound healing. Therefore, these biopolymers historical past, properties and extraction methods and application approach were emphasized.

References

  • Abdallah, M. M., Fernández, N., Matias, A. A., & Bronze, M. do R. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. In Carbohydrate Polymers (Vol. 243). https://doi.org/10.1016/j.carbpol.2020.116441
  • Ahmad Raus, R., Wan Nawawi, W. M. F., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. In Asian Journal of Pharmaceutical Sciences (Vol. 16, Issue 3). https://doi.org/10.1016/j.ajps.2020.10.001
  • Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4). https://doi.org/10.1128/mr.54.4.450-472.1990
  • Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. In Progress in Polymer Science (Vol. 39, Issue 9). https://doi.org/10.1016/j.progpolymsci.2014.02.008
  • Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. In Polymers (Vol. 13, Issue 19). https://doi.org/10.3390/polym13193256
  • Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods -A review. Food Technology and Biotechnology, 51(1).
  • A.R.C. (2020). Biopolymers Market–Forecast (2022–2027).https://www.industryarc.com/Report/11739/biopolymersmarket.html this site was avaliable on 23. 12.2022
  • Balakrishna Pillai, A., Jaya Kumar, A., & Kumarapillai, H. (2020). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech, 10(2). https://doi.org/10.1007/s13205-019-2017-9
  • Barr, T. (2020). The Past and Future of the Seaweed Derived Impression Material Alginate.
  • Braunegg, G., Lefebvre, G., & Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. In Journal of Biotechnology (Vol. 65, Issues 2–3). https://doi.org/10.1016/S0168-1656(98)00126-6
  • Baranwal, J., Barse, B., Fais, A., Delogu, G. L., & Kumar, A. (2022). Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers, 14(5), 983. https://doi.org/10.3390/polym14050983
  • Çakmak, H., Çelik, P. A., Çınar, S., Hoşgün, E. Z., Mutlu, M. B., & Çabuk, A. (2020). Levan Production Potentials from Different Hypersaline Environments in Turkey. Journal of Microbiology, Biotechnology and Food Sciences, 10(1). https://doi.org/10.15414/jmbfs.2020.10.1.61-64
  • Çankaya, N. (2017). Biyopolimerler ve Montmorillonit Kil Nanokompozitleri. Politeknik Dergisi, 20(3).
  • Chen, G. Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. In Biomaterials (Vol. 26, Issue 33). https://doi.org/10.1016/j.biomaterials.2005.04.036
  • Chen, Y., Guo, Z., Wang, X., & Qiu, C. (2008). Sample preparation. In Journal of Chromatography A (Vol. 1184, Issues 1–2). https://doi.org/10.1016/j.chroma.2007.10.026
  • Chesterman, J., Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2020). Biodegradable polymers. In Principles of Tissue Engineering. https://doi.org/10.1016/B978-0-12-818422-6.00019-8
  • Crini, G., & Lichtfouse, E. (2019). Sustainable Agriculture Reviews 35. In Sustainable Agriculture Reviews (Vol. 35, Issue Chitin and Chitosan: History, Fundamentals and Innovations).
  • Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 36, Issue 8). https://doi.org/10.1016/j.progpolymsci.2011.02.001
  • de Lima Batista, A. C., de Souza Neto, F. E., & de Souza Paiva, W. (2018). Review of fungal chitosan: past, present and perspectives in Brazil. In Polimeros (Vol. 28, Issue 3). https://doi.org/10.1590/0104-1428.08316
  • Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyaluronic acid and its biomedical applications: A review. In Engineered Regeneration (Vol. 1). https://doi.org/10.1016/j.engreg.2020.10.001
  • Dunlop, W. F., & Robards, A. W. (1973). Ultrastructural study of poly β hydroxybutyrate granules from Bacillus cereus. Journal of Bacteriology, 114(3). https://doi.org/10.1128/jb.114.3.1271-1280.1973
  • Durner, R., Witholt, B., & Egli, T. (2000). Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Applied and Environmental Microbiology, 66(8). https://doi.org/10.1128/AEM.66.8.3408-3414.2000
  • el Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. In International Journal of Biological Macromolecules (Vol. 120). https://doi.org/10.1016/j.ijbiomac.2018.08.139
  • Falcone, S. J., Palmeri, D., & Berg, R. A. (2006). Biomedical applications of hyaluronic acid. ACS Symposium Series, 934. https://doi.org/10.1021/bk-2006-0934.ch008
  • Gedikli, S., Çelik, P. A., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2019). Experimental Exploration of Thermostable Poly (β-Hydroxybutyrates) by Geobacillus kaustophilus Using Box-Behnken Design. Journal of Polymers and the Environment, 27(2). https://doi.org/10.1007/s10924-018-1335-z
  • Ghosh, S., Lahiri, D., Nag, M., Dey, A., Sarkar, T., Pathak, S. K., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. In Polymers (Vol. 13, Issue 8). https://doi.org/10.3390/polym13081242
  • Gomes, T. D., Caridade, S. G., Sousa, M. P., Azevedo, S., Kandur, M. Y., Öner, E. T., Alves, N. M., & Mano, J. F. (2018). Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 69. https://doi.org/10.1016/j.actbio.2018.01.027
  • González-Garcinuño, Á., Tabernero, A., Domínguez, Á., Galán, M. A., & Martin del Valle, E. M. (2018). Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 36(3). https://doi.org/10.1080/10242422.2017.1314467
  • Gouda, M. K., Swellam, A. E., & Omar, S. H. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research, 156(3). https://doi.org/10.1078/0944-5013-00104
  • Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D. E., Demirbilek, M., Yazıhan, N., Aytar Çelik, P., Denkbaş, E. B., & Çabuk, A. (2019). Bacterial hyaluronic acid production through an alternative extraction method and its characterization. Journal of Chemical Technology and Biotechnology, 94(6). https://doi.org/10.1002/jctb.5957
  • Güngörmedi, G., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2014). Polyhydroxybutyrate and hydroxyvalerate production by Bacillus megaterium strain A1 isolated from hydrocarbon-contaminated soil. Journal of Applied Polymer Science, 131(15). https://doi.org/10.1002/app.40530
  • Haddar, A., Hamed, M., Bouallegue, A., Bastos, R., Coelho, E., & Coimbra, M. A. (2021). Structural elucidation and interfacial properties of a levan isolated from Bacillus mojavensis. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128456
  • Hinchliffe, J. D., Madappura, A. P., Syed Mohamed, S. M. D., & Roy, I. (2021). Biomedical applications of bacteria-derived polymers. In Polymers (Vol. 13, Issue 7). https://doi.org/10.3390/polym13071081
  • Jose, A. A., Hazeena, S. H., Lakshmi, N. M., B, A. K., Madhavan, A., Sirohi, R., Tarafdar, A., Sindhu, R., Awasthi, M. K., Pandey, A., & Binod, P. (2022). Bacterial biopolymers: From production to applications in biomedicine. Sustainable Chemistry and Pharmacy, 25, 100582. https://doi.org/10.1016/j.scp.2021.100582
  • Koller, M., Atlić, A., Dias, M., Reiterer, A., & Braunegg, G. (2010). Microbial PHA Production from Waste Raw Materials. https://doi.org/10.1007/978-3-642-03287-5_5
  • Kuzgun, N. K., & İnanlı, A. G. (2013). Kitosan üretimi ve özellikleri ile kitosanın kullanım alanları. Türk Bilimsel Derlemeler Dergisi 6, 6(2).
  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 37, Issue 1). https://doi.org/10.1016/j.progpolymsci.2011.06.003
  • Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. In Microbial Cell Factories (Vol. 10). https://doi.org/10.1186/1475-2859-10-99
  • Madison, L. L., & Huisman, G. W. (1999). Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 63(1). https://doi.org/10.1128/mmbr.63.1.21-53.1999
  • Masaeli, E., Morshed, M., Nasr-Esfahani, M. H., Sadri, S., Hilderink, J., van Apeldoorn, A., van Blitterswijk, C. A., & Moroni, L. (2013). Fabrication, Characterization and Cellular Compatibility of Poly (Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057157
  • Miu, D. M., Eremia, M. C., & Moscovici, M. (2022). Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. In Materials (Vol. 15, Issue 4). https://doi.org/10.3390/ma15041410
  • Mohan, S., Oluwafemi, O. S., Kalarikkal, N., Thomas, S., & Songca, S. P. (2016). Biopolymers – Application in Nanoscience and Nanotechnology. In Recent Advances in Biopolymers. https://doi.org/10.5772/62225
  • Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. In Nature Reviews Microbiology (Vol. 18, Issue 4). https://doi.org/10.1038/s41579-019-0313-3
  • Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. In Environmental Chemistry Letters (Vol. 17, Issue 4). https://doi.org/10.1007/s10311-019-00904-x
  • Muhammadi, Shabina, Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3–4). https://doi.org/10.1080/17518253.2015.1109715
  • Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., & González, M. P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90(3). https://doi.org/10.1016/j.fbp.2011.11.002
  • Odian, G. (2004). Principles of Polymerization. In Principles of Polymerization. https://doi.org/10.1002/047147875x
  • Öner, E. T., Hernández, L., & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. In Biotechnology Advances (Vol. 34, Issue 5). https://doi.org/10.1016/j.biotechadv.2016.05.002
  • Othman, S. H. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2. https://doi.org/10.1016/j.aaspro.2014.11.042
  • Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. In Biomaterials (Vol. 33, Issue 11). https://doi.org/10.1016/j.biomaterials.2012.01.007
  • Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathomareeid, W., Aizawa, T., Behrens, R. L., & Lumyongid, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0230443
  • Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5. https://doi.org/10.1016/j.procir.2013.01.042
  • Poirier, Y. (2002). Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. In Progress in Lipid Research (Vol. 41, Issue 2). https://doi.org/10.1016/S0163-7827(01)00018-2
  • Puscaselu, R. G., Lobiuc, A., Dimian, M., & Covasa, M. (2020). Alginate: From food industry to biomedical applications and management of metabolic disorders. In Polymers (Vol. 12, Issue 10). https://doi.org/10.3390/polym12102417
  • Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. In Applied Microbiology and Biotechnology (Vol. 85, Issue 6). https://doi.org/10.1007/s00253-009-2397-6
  • Ramsay, B. A., Saracovan, I., Ramsay, J. A., & Marchessault, R. H. (1991). Continuous production of long-side-chain poly-β-hydroxyalkanoates by Pseudomonas oleovorans. Applied and Environmental Microbiology, 57(3). https://doi.org/10.1128/aem.57.3.625-629.1991
  • Rebelo, R., Fernandes, M., & Fangueiro, R. (2017).
  • Biopolymers in Medical Implants: A Brief Review. Procedia Engineering, 200, 236–243. https://doi.org/10.1016/j.proeng.2017.07.034
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. In Progress in Polymer Science (Oxford) (Vol. 31, Issue 7). https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • Ruiz, G. A. M., & Corrales, H. F. Z. (2017). Chitosan, Chitosan Derivatives and their Biomedical Applications. In Biological Activities and Application of Marine Polysaccharides. https://doi.org/10.5772/66527
  • Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. In SN Applied Sciences (Vol. 3, Issue 1). https://doi.org/10.1007/s42452-020-04096-w
  • Salehizadeh, H., & van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnology Advances, 22(3). https://doi.org/10.1016/j.biotechadv.2003.09.003
  • Salernitano, E., & Migliaresi, C. (2018). Composite Materials for Biomedical Applications: A Review: https://doi.org/10.1177/228080000300100102
  • Saranraj, P., & Naidu, M. A. (2013). Hyaluronic Acid Production and its Applications-A Review. In International Journal of Pharmaceutical & Biological Archives (Vol. 4, Issue 5).
  • Selyanin, M. A., Boykov, P. Ya., Khabarov, V. N., & Polyak, F. (2015). The History of Hyaluronic Acid Discovery, Foundational Research and Initial Use. In Hyaluronic Acid. https://doi.org/10.1002/9781118695920.ch1
  • Slater, S., Gallaher, T., & Dennis, D. (1992). Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Applied and Environmental Microbiology, 58(4). https://doi.org/10.1128/aem.58.4.1089-1094.1992
  • Srikanth, R., Reddy, C. H. S. S. S., Siddartha, G., Ramaiah, M. J., & Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. In Carbohydrate Polymers (Vol. 120). https://doi.org/10.1016/j.carbpol.2014.12.003
  • Steinbüchel, A., & Schlegel, H. G. (1991). Physiology and molecular genetics of poly (β‐hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. In Molecular Microbiology (Vol. 5, Issue 3). https://doi.org/10.1111/j.1365-2958.1991.tb00725.x
  • Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. In International Journal of Polymer Science (Vol. 2016). https://doi.org/10.1155/2016/7697031
  • Taidi, B., Anderson, A. J., Dawes, E. A., & Byrom, D. (1994). Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Applied Microbiology and Biotechnology, 40(6). https://doi.org/10.1007/BF00173975
  • Taran, M., Etemadi, S., & Safaei, M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II,III) oxide–levan nanocomposite. Journal of Applied Polymer Science, 134(12). https://doi.org/10.1002/app.44613
  • Tobin, K. M., & O’Connor, K. E. (2005). Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiology Letters, 253(1). https://doi.org/10.1016/j.femsle.2005.09.025
  • Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, Z. S., & Toksoy Oner, E. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules, 118. https://doi.org/10.1016/j.ijbiomac.2018.06.197
  • Wani, S., Shaikh, S., & Sayyed z, R. (2016). Microbial Biopolymers in Biomedical Field. MOJ Cell Science & Report, 3(3). https://doi.org/10.15406/mojcsr.2016.03.00055
  • Williams, S. F., Martin, D. P., Horowitz, D. M., & Peoples, O. P. (1999). PHA applications: Addressing the price performance issue I. Tissue engineering. International Journal of Biological Macromolecules, 25(1–3). https://doi.org/10.1016/S0141-8130(99)00022-7
  • Yasin, A., Ren, Y., Li, J., Sheng, Y., Cao, C., & Zhang, K. (2022). Advances in Hyaluronic Acid for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 10, 910290. https://doi.org/10.3389/fbioe.2022.910290
  • Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2014). Biodegradable Polymers. In Handbook of Polymer Applications in Medicine and Medical Devices. https://doi.org/10.1016/B978-0-323-22805-3.00013-X

BİYOMEDİKAL UYGULAMALARDA KULLANILAN MİKROBİYAL BİYOPOLİMERLERE BAKIŞ

Year 2023, Volume: 31 Issue: 4, 975 - 987, 22.12.2023
https://doi.org/10.31796/ogummf.1205232

Abstract

Mikrobiyal biyopolimerler, mikroorganizma, bitki vb. dahil canlı organizmaların ürünleri olarak tanımlanır. Biyolojik olarak parçalanabilir, biyouyumlu, toksik olmayan veya düşük toksik, anti enflamatuar ve antimikrobiyal aktivite gibi özelliklere sahip olabilirler. Polisakkarit, lipid ve protein olarak gruplandırılmışlardır. Mikrobiyal biyopolimerler, biyomedikal uygulamalar, doku mühendisliği, gıda endüstrisi, yara onarım sistemi, ilaç dağılımını içeren değişken sektörlerdeki biyomalzemeler olarak önemli bir kaynaktır. Bu nedenle, tıbbi implantların şeklinden dolayı bu alanlar için seçim kriterleri hayati önem taşımaktadır. Medikal uygulamalarda güvenli ve uzun süreli implant için bu kriterler pasif ve inert seçilmelidir.
Bu derlemede, biyopolimer türevli mikroorganizmalar, özellikle aljinat, kitin, kitosan, levan, polihidroksalkanoatlar, hyaluronik asit ele alınmış ve mikrobiyal biyopolimerlerin biyomedikal araştırma alanındaki potansiyeline ışık tutmuştur. Biyomedikal uygulamalar için bu polimerlerin ekonomik faktörleri, biyosentezi ve özellikleri incelenmiştir. Mikrobiyal biyopolimerlerin olağanüstü derecede değişken olma ve uyarılmış özelliklere sahip olma yetenekleri, onları biyomedikal araştırmalardaki sorunları çözmek için avantajlı kılar. Mikrobiyal biyopolimerler, doku mühendisliği, tıbbi cihazların geliştirilmesi, ilaç dağılımı, kanser tedavisi ve yara iyileşmesi dahil olmak üzere bir dizi tıbbi uygulamada sürdürülebilir süreçleri düzenlemek için kullanılabilir. Bu nedenle bu biyopolimerlerin tarihçesi, özellikleri, ekstraksiyon yöntemleri ve uygulama alanları yaklaşımı üzerinde durulmuştur.

References

  • Abdallah, M. M., Fernández, N., Matias, A. A., & Bronze, M. do R. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. In Carbohydrate Polymers (Vol. 243). https://doi.org/10.1016/j.carbpol.2020.116441
  • Ahmad Raus, R., Wan Nawawi, W. M. F., & Nasaruddin, R. R. (2021). Alginate and alginate composites for biomedical applications. In Asian Journal of Pharmaceutical Sciences (Vol. 16, Issue 3). https://doi.org/10.1016/j.ajps.2020.10.001
  • Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4). https://doi.org/10.1128/mr.54.4.450-472.1990
  • Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. In Progress in Polymer Science (Vol. 39, Issue 9). https://doi.org/10.1016/j.progpolymsci.2014.02.008
  • Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. In Polymers (Vol. 13, Issue 19). https://doi.org/10.3390/polym13193256
  • Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods -A review. Food Technology and Biotechnology, 51(1).
  • A.R.C. (2020). Biopolymers Market–Forecast (2022–2027).https://www.industryarc.com/Report/11739/biopolymersmarket.html this site was avaliable on 23. 12.2022
  • Balakrishna Pillai, A., Jaya Kumar, A., & Kumarapillai, H. (2020). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech, 10(2). https://doi.org/10.1007/s13205-019-2017-9
  • Barr, T. (2020). The Past and Future of the Seaweed Derived Impression Material Alginate.
  • Braunegg, G., Lefebvre, G., & Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. In Journal of Biotechnology (Vol. 65, Issues 2–3). https://doi.org/10.1016/S0168-1656(98)00126-6
  • Baranwal, J., Barse, B., Fais, A., Delogu, G. L., & Kumar, A. (2022). Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers, 14(5), 983. https://doi.org/10.3390/polym14050983
  • Çakmak, H., Çelik, P. A., Çınar, S., Hoşgün, E. Z., Mutlu, M. B., & Çabuk, A. (2020). Levan Production Potentials from Different Hypersaline Environments in Turkey. Journal of Microbiology, Biotechnology and Food Sciences, 10(1). https://doi.org/10.15414/jmbfs.2020.10.1.61-64
  • Çankaya, N. (2017). Biyopolimerler ve Montmorillonit Kil Nanokompozitleri. Politeknik Dergisi, 20(3).
  • Chen, G. Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. In Biomaterials (Vol. 26, Issue 33). https://doi.org/10.1016/j.biomaterials.2005.04.036
  • Chen, Y., Guo, Z., Wang, X., & Qiu, C. (2008). Sample preparation. In Journal of Chromatography A (Vol. 1184, Issues 1–2). https://doi.org/10.1016/j.chroma.2007.10.026
  • Chesterman, J., Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2020). Biodegradable polymers. In Principles of Tissue Engineering. https://doi.org/10.1016/B978-0-12-818422-6.00019-8
  • Crini, G., & Lichtfouse, E. (2019). Sustainable Agriculture Reviews 35. In Sustainable Agriculture Reviews (Vol. 35, Issue Chitin and Chitosan: History, Fundamentals and Innovations).
  • Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 36, Issue 8). https://doi.org/10.1016/j.progpolymsci.2011.02.001
  • de Lima Batista, A. C., de Souza Neto, F. E., & de Souza Paiva, W. (2018). Review of fungal chitosan: past, present and perspectives in Brazil. In Polimeros (Vol. 28, Issue 3). https://doi.org/10.1590/0104-1428.08316
  • Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyaluronic acid and its biomedical applications: A review. In Engineered Regeneration (Vol. 1). https://doi.org/10.1016/j.engreg.2020.10.001
  • Dunlop, W. F., & Robards, A. W. (1973). Ultrastructural study of poly β hydroxybutyrate granules from Bacillus cereus. Journal of Bacteriology, 114(3). https://doi.org/10.1128/jb.114.3.1271-1280.1973
  • Durner, R., Witholt, B., & Egli, T. (2000). Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Applied and Environmental Microbiology, 66(8). https://doi.org/10.1128/AEM.66.8.3408-3414.2000
  • el Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. In International Journal of Biological Macromolecules (Vol. 120). https://doi.org/10.1016/j.ijbiomac.2018.08.139
  • Falcone, S. J., Palmeri, D., & Berg, R. A. (2006). Biomedical applications of hyaluronic acid. ACS Symposium Series, 934. https://doi.org/10.1021/bk-2006-0934.ch008
  • Gedikli, S., Çelik, P. A., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2019). Experimental Exploration of Thermostable Poly (β-Hydroxybutyrates) by Geobacillus kaustophilus Using Box-Behnken Design. Journal of Polymers and the Environment, 27(2). https://doi.org/10.1007/s10924-018-1335-z
  • Ghosh, S., Lahiri, D., Nag, M., Dey, A., Sarkar, T., Pathak, S. K., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. In Polymers (Vol. 13, Issue 8). https://doi.org/10.3390/polym13081242
  • Gomes, T. D., Caridade, S. G., Sousa, M. P., Azevedo, S., Kandur, M. Y., Öner, E. T., Alves, N. M., & Mano, J. F. (2018). Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 69. https://doi.org/10.1016/j.actbio.2018.01.027
  • González-Garcinuño, Á., Tabernero, A., Domínguez, Á., Galán, M. A., & Martin del Valle, E. M. (2018). Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 36(3). https://doi.org/10.1080/10242422.2017.1314467
  • Gouda, M. K., Swellam, A. E., & Omar, S. H. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research, 156(3). https://doi.org/10.1078/0944-5013-00104
  • Güngör, G., Gedikli, S., Toptaş, Y., Akgün, D. E., Demirbilek, M., Yazıhan, N., Aytar Çelik, P., Denkbaş, E. B., & Çabuk, A. (2019). Bacterial hyaluronic acid production through an alternative extraction method and its characterization. Journal of Chemical Technology and Biotechnology, 94(6). https://doi.org/10.1002/jctb.5957
  • Güngörmedi, G., Demirbilek, M., Mutlu, M. B., Denkbaş, E. B., & Çabuk, A. (2014). Polyhydroxybutyrate and hydroxyvalerate production by Bacillus megaterium strain A1 isolated from hydrocarbon-contaminated soil. Journal of Applied Polymer Science, 131(15). https://doi.org/10.1002/app.40530
  • Haddar, A., Hamed, M., Bouallegue, A., Bastos, R., Coelho, E., & Coimbra, M. A. (2021). Structural elucidation and interfacial properties of a levan isolated from Bacillus mojavensis. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128456
  • Hinchliffe, J. D., Madappura, A. P., Syed Mohamed, S. M. D., & Roy, I. (2021). Biomedical applications of bacteria-derived polymers. In Polymers (Vol. 13, Issue 7). https://doi.org/10.3390/polym13071081
  • Jose, A. A., Hazeena, S. H., Lakshmi, N. M., B, A. K., Madhavan, A., Sirohi, R., Tarafdar, A., Sindhu, R., Awasthi, M. K., Pandey, A., & Binod, P. (2022). Bacterial biopolymers: From production to applications in biomedicine. Sustainable Chemistry and Pharmacy, 25, 100582. https://doi.org/10.1016/j.scp.2021.100582
  • Koller, M., Atlić, A., Dias, M., Reiterer, A., & Braunegg, G. (2010). Microbial PHA Production from Waste Raw Materials. https://doi.org/10.1007/978-3-642-03287-5_5
  • Kuzgun, N. K., & İnanlı, A. G. (2013). Kitosan üretimi ve özellikleri ile kitosanın kullanım alanları. Türk Bilimsel Derlemeler Dergisi 6, 6(2).
  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 37, Issue 1). https://doi.org/10.1016/j.progpolymsci.2011.06.003
  • Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. In Microbial Cell Factories (Vol. 10). https://doi.org/10.1186/1475-2859-10-99
  • Madison, L. L., & Huisman, G. W. (1999). Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 63(1). https://doi.org/10.1128/mmbr.63.1.21-53.1999
  • Masaeli, E., Morshed, M., Nasr-Esfahani, M. H., Sadri, S., Hilderink, J., van Apeldoorn, A., van Blitterswijk, C. A., & Moroni, L. (2013). Fabrication, Characterization and Cellular Compatibility of Poly (Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057157
  • Miu, D. M., Eremia, M. C., & Moscovici, M. (2022). Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. In Materials (Vol. 15, Issue 4). https://doi.org/10.3390/ma15041410
  • Mohan, S., Oluwafemi, O. S., Kalarikkal, N., Thomas, S., & Songca, S. P. (2016). Biopolymers – Application in Nanoscience and Nanotechnology. In Recent Advances in Biopolymers. https://doi.org/10.5772/62225
  • Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. In Nature Reviews Microbiology (Vol. 18, Issue 4). https://doi.org/10.1038/s41579-019-0313-3
  • Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. In Environmental Chemistry Letters (Vol. 17, Issue 4). https://doi.org/10.1007/s10311-019-00904-x
  • Muhammadi, Shabina, Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3–4). https://doi.org/10.1080/17518253.2015.1109715
  • Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., & González, M. P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90(3). https://doi.org/10.1016/j.fbp.2011.11.002
  • Odian, G. (2004). Principles of Polymerization. In Principles of Polymerization. https://doi.org/10.1002/047147875x
  • Öner, E. T., Hernández, L., & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. In Biotechnology Advances (Vol. 34, Issue 5). https://doi.org/10.1016/j.biotechadv.2016.05.002
  • Othman, S. H. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2. https://doi.org/10.1016/j.aaspro.2014.11.042
  • Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. In Biomaterials (Vol. 33, Issue 11). https://doi.org/10.1016/j.biomaterials.2012.01.007
  • Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathomareeid, W., Aizawa, T., Behrens, R. L., & Lumyongid, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0230443
  • Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5. https://doi.org/10.1016/j.procir.2013.01.042
  • Poirier, Y. (2002). Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. In Progress in Lipid Research (Vol. 41, Issue 2). https://doi.org/10.1016/S0163-7827(01)00018-2
  • Puscaselu, R. G., Lobiuc, A., Dimian, M., & Covasa, M. (2020). Alginate: From food industry to biomedical applications and management of metabolic disorders. In Polymers (Vol. 12, Issue 10). https://doi.org/10.3390/polym12102417
  • Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. In Applied Microbiology and Biotechnology (Vol. 85, Issue 6). https://doi.org/10.1007/s00253-009-2397-6
  • Ramsay, B. A., Saracovan, I., Ramsay, J. A., & Marchessault, R. H. (1991). Continuous production of long-side-chain poly-β-hydroxyalkanoates by Pseudomonas oleovorans. Applied and Environmental Microbiology, 57(3). https://doi.org/10.1128/aem.57.3.625-629.1991
  • Rebelo, R., Fernandes, M., & Fangueiro, R. (2017).
  • Biopolymers in Medical Implants: A Brief Review. Procedia Engineering, 200, 236–243. https://doi.org/10.1016/j.proeng.2017.07.034
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. In Progress in Polymer Science (Oxford) (Vol. 31, Issue 7). https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • Ruiz, G. A. M., & Corrales, H. F. Z. (2017). Chitosan, Chitosan Derivatives and their Biomedical Applications. In Biological Activities and Application of Marine Polysaccharides. https://doi.org/10.5772/66527
  • Sahoo, D. R., & Biswal, T. (2021). Alginate and its application to tissue engineering. In SN Applied Sciences (Vol. 3, Issue 1). https://doi.org/10.1007/s42452-020-04096-w
  • Salehizadeh, H., & van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnology Advances, 22(3). https://doi.org/10.1016/j.biotechadv.2003.09.003
  • Salernitano, E., & Migliaresi, C. (2018). Composite Materials for Biomedical Applications: A Review: https://doi.org/10.1177/228080000300100102
  • Saranraj, P., & Naidu, M. A. (2013). Hyaluronic Acid Production and its Applications-A Review. In International Journal of Pharmaceutical & Biological Archives (Vol. 4, Issue 5).
  • Selyanin, M. A., Boykov, P. Ya., Khabarov, V. N., & Polyak, F. (2015). The History of Hyaluronic Acid Discovery, Foundational Research and Initial Use. In Hyaluronic Acid. https://doi.org/10.1002/9781118695920.ch1
  • Slater, S., Gallaher, T., & Dennis, D. (1992). Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Applied and Environmental Microbiology, 58(4). https://doi.org/10.1128/aem.58.4.1089-1094.1992
  • Srikanth, R., Reddy, C. H. S. S. S., Siddartha, G., Ramaiah, M. J., & Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. In Carbohydrate Polymers (Vol. 120). https://doi.org/10.1016/j.carbpol.2014.12.003
  • Steinbüchel, A., & Schlegel, H. G. (1991). Physiology and molecular genetics of poly (β‐hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. In Molecular Microbiology (Vol. 5, Issue 3). https://doi.org/10.1111/j.1365-2958.1991.tb00725.x
  • Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. In International Journal of Polymer Science (Vol. 2016). https://doi.org/10.1155/2016/7697031
  • Taidi, B., Anderson, A. J., Dawes, E. A., & Byrom, D. (1994). Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Applied Microbiology and Biotechnology, 40(6). https://doi.org/10.1007/BF00173975
  • Taran, M., Etemadi, S., & Safaei, M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II,III) oxide–levan nanocomposite. Journal of Applied Polymer Science, 134(12). https://doi.org/10.1002/app.44613
  • Tobin, K. M., & O’Connor, K. E. (2005). Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiology Letters, 253(1). https://doi.org/10.1016/j.femsle.2005.09.025
  • Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, Z. S., & Toksoy Oner, E. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules, 118. https://doi.org/10.1016/j.ijbiomac.2018.06.197
  • Wani, S., Shaikh, S., & Sayyed z, R. (2016). Microbial Biopolymers in Biomedical Field. MOJ Cell Science & Report, 3(3). https://doi.org/10.15406/mojcsr.2016.03.00055
  • Williams, S. F., Martin, D. P., Horowitz, D. M., & Peoples, O. P. (1999). PHA applications: Addressing the price performance issue I. Tissue engineering. International Journal of Biological Macromolecules, 25(1–3). https://doi.org/10.1016/S0141-8130(99)00022-7
  • Yasin, A., Ren, Y., Li, J., Sheng, Y., Cao, C., & Zhang, K. (2022). Advances in Hyaluronic Acid for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 10, 910290. https://doi.org/10.3389/fbioe.2022.910290
  • Zhang, Z., Ortiz, O., Goyal, R., & Kohn, J. (2014). Biodegradable Polymers. In Handbook of Polymer Applications in Medicine and Medical Devices. https://doi.org/10.1016/B978-0-323-22805-3.00013-X
There are 77 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other)
Journal Section Review Articles
Authors

Belma Nural Yaman 0000-0003-2576-1300

Benay Çolak 0000-0003-2116-5966

Doç. Dr. Ahmet Çabuk 0000-0002-4619-6948

Early Pub Date December 22, 2023
Publication Date December 22, 2023
Acceptance Date January 25, 2023
Published in Issue Year 2023 Volume: 31 Issue: 4

Cite

APA Nural Yaman, B., Çolak, B., & Çabuk, D. D. A. (2023). INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(4), 975-987. https://doi.org/10.31796/ogummf.1205232
AMA Nural Yaman B, Çolak B, Çabuk DDA. INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS. ESOGÜ Müh Mim Fak Derg. December 2023;31(4):975-987. doi:10.31796/ogummf.1205232
Chicago Nural Yaman, Belma, Benay Çolak, and Doç. Dr. Ahmet Çabuk. “INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 4 (December 2023): 975-87. https://doi.org/10.31796/ogummf.1205232.
EndNote Nural Yaman B, Çolak B, Çabuk DDA (December 1, 2023) INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 4 975–987.
IEEE B. Nural Yaman, B. Çolak, and D. D. A. Çabuk, “INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 4, pp. 975–987, 2023, doi: 10.31796/ogummf.1205232.
ISNAD Nural Yaman, Belma et al. “INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/4 (December 2023), 975-987. https://doi.org/10.31796/ogummf.1205232.
JAMA Nural Yaman B, Çolak B, Çabuk DDA. INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS. ESOGÜ Müh Mim Fak Derg. 2023;31:975–987.
MLA Nural Yaman, Belma et al. “INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 4, 2023, pp. 975-87, doi:10.31796/ogummf.1205232.
Vancouver Nural Yaman B, Çolak B, Çabuk DDA. INSIGHT TO THE MICROBIAL BIOPOLYMERS USED IN BIOMEDICAL APPLICATIONS. ESOGÜ Müh Mim Fak Derg. 2023;31(4):975-87.

20873  13565  13566 15461  13568    14913