Research Article
BibTex RIS Cite

DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ

Year 2024, Volume: 32 Issue: 1, 1169 - 1176, 22.04.2024
https://doi.org/10.31796/ogummf.1362774

Abstract

Dolgu barajların uzun dönemli güvenliği, sızma akımının gerçekleştiği zeminlerin içsel stabilitesine bağlıdır. Sufüzyon/sufozyon, kohezyonsuz zeminlerde görece ince malzemelerin, iri malzemelerin arasındaki boşluklardan sızma akımıyla taşınması olarak tanımlanır. Sufüzyon/sufozyon mekanizmasına bağlı olarak gerçekleşen içsel stabilite bozulmasıyla, granüler filtrelerde geriye doğru erozyon(borulanma) veya boşluk suyu basıncındaki artışa bağlı olarak statik stabilite kaybı gözlemlenebilir. Sufüzyonun gerçekleşebilmesi için iki koşul vardır: Sızma akımının yeterli hidrolik eğime sahip olması ve malzemenin granülometrisinin danelerin taşınmasına elverişli olması. Granüler filtrelerin tasarım ve planlanmasında sufüzyon mekanizmasının önceden belirlenebilmesi için bazı yaklaşımlar geliştirilmiştir. Bu çalışmada, dane çapı dağılım eğrisini kullanarak içsel stabilite potansiyelini belirleyen Istomina, Kezdi, Kenney ve Lau ile Burenkova metotları karşılaştırılmıştır. Eskişehir ili sınırları içerisinde yer alan Gökpınar Barajı’nın yarı-geçirimli malzeme sahasındaki plastik olmayan zeminler üzerinde yapılan çalışmaya göre, yöntemlerin uygulama esasları birbirine benzedikçe aynı değerlendirme sonucunu bulma oranları artmaktadır.

References

  • Adel, H. D., Bakker, K. J., ve Breteler, M. K. (1988). Internal stability of minestone. Proceedings of International Symposium on Modelling Soil-Water-Structure Interactions, Balkema, Rotterdam, 225–231.
  • Bonelli, S. (2013). Erosion in geomechanics applied to dams and levees, ISTE Limited, London, UK.
  • Burenkova, V., V. (1993). Assessment of suffosion in granular and graded soils. Filters in Geotechnical and Hydraulic Engineering, Karlsruhe, Germany, 357–360.
  • Chang, D. (2012). Internal erosion and overtopping erosion of earth dams and landslide dams, Ph. D. Thesis. The Hong Kong University of Science and Technology, Hong Kong.
  • Charles, J., A. (2001). Internal erosion in European embankments dams. Proceedings of Hydropower 01, ICOLD European Symposium, Geiranger, Norway.
  • Cividini, A., Bonomi, S., Vignati, G. C., Gioda, G. (2009). Seepage-induced erosion in granular soil and consequent settlements. International Journal of Geomechanics, 9(4): 187–194. doi: https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187).
  • Fannin, R. J., ve Moffat, R. (2006). Observations on internal stability of cohesionless soils. Geotechnique, 56(7): 497–500. doi: https://doi.org/10.1680/geot.2006.56.7.497
  • Federal Emergency Management Agency (FEMA). (2015). Evaluation and monitoring of seepage and internal erosion, FEMA P-1032 Report, Washington DC, 576 s. Erişim adresi: https://www.fema.gov/sites/default/files/2020-08/fema_p1032_eval_monitoring_seepage_internal_erosion.pdf
  • Fell, R., Fry, J., J. (2007). The state of the art of assessing the likelihood of internal erosion of embankment dams, water retaining structures and their foundations. Internal Erosion of Dams and their Foundations. Taylor & Francis Group, London, 1–23.
  • Flores-Berrones, R., Ramirez-Reynaga, M., Macari, E. J. (2011). Internal erosion and rehabilitation of an earth-rock dam, Journal of Geotechnical and Geoenvironmental Engineering, 137(2): 150–160. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000371
  • Geotechnical Engineering Office (GEO). (1993). Review of granular and geotextile filters. GEO Publication No. 1/93. Civil Engineering Department, Hong Kong. Erişim adresi: https://www.cedd.gov.hk/filemanager/eng/content_147/ep1_93.pdf
  • ICOLD. (1994). Embankment dams: granular filters and drains. Bulletin No. 95, International Commission on Large Dams, Paris, France.
  • Indraratna, B., Nguyen, V. T., ve Rujikiatkamjorn, C. (2011). Assessing the potential of internal erosion and suffusion of granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(5): 550–554. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000447
  • Kenney, T. C., ve Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2): 215–225. doi: https://doi.org/10.1139/t85-029
  • Kenney, T. C., ve Lau, D. (1986). Internal stability of granular filters: Reply. Canadian Geotechnical Journal, 23(3): 420–423. doi: https://doi.org/10.1139/t86-068
  • Kezdi, A. (1979). Soil physics-selected topics. Elsevier Scientific Publishing Co., Amsterdam.
  • Kovacs, G. (1981). Seepage hydraulics. Amsterdam, Elsevier Scientific Publishing Company.
  • Li, M., ve Fannin, R. J. (2012). A theoretical envelope for internal instability of cohesionless soil. Geotechnique, 62(1): 77–80. doi: https://doi.org/10.1680/geot.10.T.019
  • Milligan, V. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(3): 414–418. doi: https://doi.org/10.1139/t86-066
  • Moffat, R., Fannin, R., J. (2011). A hydromechanical relation governing internal stability of granular soil. Canadian Geotechnical Journal, 48(3): 413–424. doi: https://doi.org/10.1139/T10-070
  • Richards, K. S., Reddy, K. R. (2007). Critical appraisal of piping phenomena in earth dams, Bulletin of Engineering Geology and the Environment, 66(4): 381–402. doi: https://doi.org/10.1007/s10064-007-0095-0
  • Ripley, C. F. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(2): 255-258. doi: https://doi.org/10.1139/t86-037
  • Schuler, U. (1995). How to deal with the problem of suffosion. Research and Development in the Field of Dams, 7(9), 145-159.
  • Seyrek, E., ve Topcu, S. (2022). Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming. Geomechanics and Engineering, 31(6), 637-651. doi: 10.12989/gae.2022.31.6.637
  • Sherard, J. L., and Dunnigan, L. P. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(3): 418–420. doi: https://doi.org/10.1139/t86-067
  • Skempton, A. W., ve Brogan, J. M. (1994). Experiments on piping in sandy gravels. Geotechnique, 44(3): 449–460. doi: https://doi.org/10.1680/geot.1994.44.3.449
  • Terzaghi, K. (1939). Soil mechanics: a new chapter in engineering science. Journal of the Institution of Civil Engineers, 12(7): 106–141.
  • Topçu, S. (2020). İnce daneli zeminlerin farklı gerilme koşullarında içsel erozyon davranışının mukayeseli analizi (Doktora Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • U.S. Army Corps of Engineers (USACE). (1953). Filter experiments and design criteria. Waterways Experiment Station, Vicksburg, Technical Memorandum, No. 3–360. Erişim adresi: https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/2106/download
  • U.S. Bureau of Reclamation (USBR). (2019). IV-4. Internal erosion risks for embankments and foundations. Bureau of Reclamation U.S, Technical Report, 218 s. Erişim adresi: https://www.usbr.gov/damsafety/risk/BestPractices/Chapters/D6-InternalErosionRisksForEmbankmentsAndFoundationsWithAppendices.pdf
  • Wan, C. F., ve Fell, R. (2008). Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3): 401–407. doi: https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)
  • Zhang, L. M., ve Chen, Q. (2006). Seepage failure mechanism of the Gouhou rockfill dam during reservoir water infiltration. Soils and Foundations, 46(5): 557–568. doi: https://doi.org/10.3208/sandf.46.557

ASSESSMENT OF INTERNAL STABILITY POTENTIAL IN EMBANKMENT DAM GRANULAR SOILS

Year 2024, Volume: 32 Issue: 1, 1169 - 1176, 22.04.2024
https://doi.org/10.31796/ogummf.1362774

Abstract

The long-term safety of embankment dams depends on the soil's internal stability where seepage occurs. Suffusion/suffosion transports relatively fine materials through the voids between coarse materials by seepage flow in cohesionless soils. Backward erosion (piping) or a loss of static stability can be observed due to increased pore water pressure in granular filters with internal stability deterioration due to the suffusion/suffosion mechanism. There are two conditions for suffusion to occur: The seepage flow must have sufficient hydraulic gradient, and the granulometry of the material must be suitable for the transport of the grains. Some approaches have been developed to predetermine the suffusion mechanism in designing and planning granular filters. In this study, Istomina, Kezdi, Kenney-Lau, and Burenkova methods that determine the internal stability potential of soil using the particle size distribution curve have been compared. According to the study carried out on non-plastic (N.P) soils in the semi-permeable material field of Gökpınar Dam, which is located within the borders of Eskişehir province, the rates of finding the same evaluation result increase as the application principles of the methods are similar.

References

  • Adel, H. D., Bakker, K. J., ve Breteler, M. K. (1988). Internal stability of minestone. Proceedings of International Symposium on Modelling Soil-Water-Structure Interactions, Balkema, Rotterdam, 225–231.
  • Bonelli, S. (2013). Erosion in geomechanics applied to dams and levees, ISTE Limited, London, UK.
  • Burenkova, V., V. (1993). Assessment of suffosion in granular and graded soils. Filters in Geotechnical and Hydraulic Engineering, Karlsruhe, Germany, 357–360.
  • Chang, D. (2012). Internal erosion and overtopping erosion of earth dams and landslide dams, Ph. D. Thesis. The Hong Kong University of Science and Technology, Hong Kong.
  • Charles, J., A. (2001). Internal erosion in European embankments dams. Proceedings of Hydropower 01, ICOLD European Symposium, Geiranger, Norway.
  • Cividini, A., Bonomi, S., Vignati, G. C., Gioda, G. (2009). Seepage-induced erosion in granular soil and consequent settlements. International Journal of Geomechanics, 9(4): 187–194. doi: https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187).
  • Fannin, R. J., ve Moffat, R. (2006). Observations on internal stability of cohesionless soils. Geotechnique, 56(7): 497–500. doi: https://doi.org/10.1680/geot.2006.56.7.497
  • Federal Emergency Management Agency (FEMA). (2015). Evaluation and monitoring of seepage and internal erosion, FEMA P-1032 Report, Washington DC, 576 s. Erişim adresi: https://www.fema.gov/sites/default/files/2020-08/fema_p1032_eval_monitoring_seepage_internal_erosion.pdf
  • Fell, R., Fry, J., J. (2007). The state of the art of assessing the likelihood of internal erosion of embankment dams, water retaining structures and their foundations. Internal Erosion of Dams and their Foundations. Taylor & Francis Group, London, 1–23.
  • Flores-Berrones, R., Ramirez-Reynaga, M., Macari, E. J. (2011). Internal erosion and rehabilitation of an earth-rock dam, Journal of Geotechnical and Geoenvironmental Engineering, 137(2): 150–160. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000371
  • Geotechnical Engineering Office (GEO). (1993). Review of granular and geotextile filters. GEO Publication No. 1/93. Civil Engineering Department, Hong Kong. Erişim adresi: https://www.cedd.gov.hk/filemanager/eng/content_147/ep1_93.pdf
  • ICOLD. (1994). Embankment dams: granular filters and drains. Bulletin No. 95, International Commission on Large Dams, Paris, France.
  • Indraratna, B., Nguyen, V. T., ve Rujikiatkamjorn, C. (2011). Assessing the potential of internal erosion and suffusion of granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(5): 550–554. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000447
  • Kenney, T. C., ve Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2): 215–225. doi: https://doi.org/10.1139/t85-029
  • Kenney, T. C., ve Lau, D. (1986). Internal stability of granular filters: Reply. Canadian Geotechnical Journal, 23(3): 420–423. doi: https://doi.org/10.1139/t86-068
  • Kezdi, A. (1979). Soil physics-selected topics. Elsevier Scientific Publishing Co., Amsterdam.
  • Kovacs, G. (1981). Seepage hydraulics. Amsterdam, Elsevier Scientific Publishing Company.
  • Li, M., ve Fannin, R. J. (2012). A theoretical envelope for internal instability of cohesionless soil. Geotechnique, 62(1): 77–80. doi: https://doi.org/10.1680/geot.10.T.019
  • Milligan, V. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(3): 414–418. doi: https://doi.org/10.1139/t86-066
  • Moffat, R., Fannin, R., J. (2011). A hydromechanical relation governing internal stability of granular soil. Canadian Geotechnical Journal, 48(3): 413–424. doi: https://doi.org/10.1139/T10-070
  • Richards, K. S., Reddy, K. R. (2007). Critical appraisal of piping phenomena in earth dams, Bulletin of Engineering Geology and the Environment, 66(4): 381–402. doi: https://doi.org/10.1007/s10064-007-0095-0
  • Ripley, C. F. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(2): 255-258. doi: https://doi.org/10.1139/t86-037
  • Schuler, U. (1995). How to deal with the problem of suffosion. Research and Development in the Field of Dams, 7(9), 145-159.
  • Seyrek, E., ve Topcu, S. (2022). Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming. Geomechanics and Engineering, 31(6), 637-651. doi: 10.12989/gae.2022.31.6.637
  • Sherard, J. L., and Dunnigan, L. P. (1986). Internal stability of granular filters: Discussion. Canadian Geotechnical Journal, 23(3): 418–420. doi: https://doi.org/10.1139/t86-067
  • Skempton, A. W., ve Brogan, J. M. (1994). Experiments on piping in sandy gravels. Geotechnique, 44(3): 449–460. doi: https://doi.org/10.1680/geot.1994.44.3.449
  • Terzaghi, K. (1939). Soil mechanics: a new chapter in engineering science. Journal of the Institution of Civil Engineers, 12(7): 106–141.
  • Topçu, S. (2020). İnce daneli zeminlerin farklı gerilme koşullarında içsel erozyon davranışının mukayeseli analizi (Doktora Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • U.S. Army Corps of Engineers (USACE). (1953). Filter experiments and design criteria. Waterways Experiment Station, Vicksburg, Technical Memorandum, No. 3–360. Erişim adresi: https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/2106/download
  • U.S. Bureau of Reclamation (USBR). (2019). IV-4. Internal erosion risks for embankments and foundations. Bureau of Reclamation U.S, Technical Report, 218 s. Erişim adresi: https://www.usbr.gov/damsafety/risk/BestPractices/Chapters/D6-InternalErosionRisksForEmbankmentsAndFoundationsWithAppendices.pdf
  • Wan, C. F., ve Fell, R. (2008). Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3): 401–407. doi: https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)
  • Zhang, L. M., ve Chen, Q. (2006). Seepage failure mechanism of the Gouhou rockfill dam during reservoir water infiltration. Soils and Foundations, 46(5): 557–568. doi: https://doi.org/10.3208/sandf.46.557
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Research Articles
Authors

Sadettin Topçu 0000-0003-1306-2502

Evren Seyrek 0000-0003-4373-6723

Early Pub Date April 22, 2024
Publication Date April 22, 2024
Acceptance Date December 27, 2023
Published in Issue Year 2024 Volume: 32 Issue: 1

Cite

APA Topçu, S., & Seyrek, E. (2024). DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(1), 1169-1176. https://doi.org/10.31796/ogummf.1362774
AMA Topçu S, Seyrek E. DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. April 2024;32(1):1169-1176. doi:10.31796/ogummf.1362774
Chicago Topçu, Sadettin, and Evren Seyrek. “DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 1 (April 2024): 1169-76. https://doi.org/10.31796/ogummf.1362774.
EndNote Topçu S, Seyrek E (April 1, 2024) DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 1 1169–1176.
IEEE S. Topçu and E. Seyrek, “DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 1, pp. 1169–1176, 2024, doi: 10.31796/ogummf.1362774.
ISNAD Topçu, Sadettin - Seyrek, Evren. “DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/1 (April 2024), 1169-1176. https://doi.org/10.31796/ogummf.1362774.
JAMA Topçu S, Seyrek E. DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1169–1176.
MLA Topçu, Sadettin and Evren Seyrek. “DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 1, 2024, pp. 1169-76, doi:10.31796/ogummf.1362774.
Vancouver Topçu S, Seyrek E. DOLGU BARAJ GRANÜLER ZEMİNLERİNDE İÇSEL STABİLİTE POTANSİYELİNİN DEĞERLENDİRİLMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32(1):1169-76.

20873  13565  13566 15461  13568    14913