EXPERIMENTAL INVESTIGATION OF STRUCTURAL PROPERTIES AND MAGNETIC REFRIGERATION PERFORMANCE OF Gd AND La0.75Ba0.25MnO3 COMPOUNDS
Year 2025,
Volume: 33 Issue: 1, 1648 - 1655, 24.04.2025
Arda Zaim
,
Haydar Aras
,
Cumhur Gökhan Ünlü
Abstract
In this study, the structural properties and magnetic cooling performance of Gd element and La0.75Ba0.25MnO3 perovskite manganite compound used as magnetocaloric material in magnetic cooling systems operating at temperatures close to room temperature were experimentally investigated. La0.75Ba0.25MnO3 perovskite manganite compound was synthesized by sol-gel method, and the structural properties of both magnetocaloric materials were examined in detail by performing SEM and EDX analysis. n SEM analysis, it was determined that the grain sizes for Gd element did not have a homogeneous distribution, the grain sizes varied between 2-20 µm and had a cubic-like hard-cornered structure; In La0.75Ba0.25MnO3 perovskite manganite compound, a smaller grain size, spherical geometry, sponge-like structure, homogeneous distribution and low void structure were observed. In the EDX analysis, it was determined that the structure in the Gd element was largely composed of Gd, and the desired structure characterization was obtained in the perovskite manganite compound synthesized by the sol-gel method. In the time-dependent temperature change experiments carried out under a magnetic field density of 1.2 T, a temperature difference of 2.204 K was obtained in the Gd element and 1.472 K in the La0.75Ba0.25MnO3 perovskite manganite compound at φ=15 defined as the critical utilization factor after 250 cycles.
Project Number
FOA-2021-2224
References
- Alahmer, A., Al-Amayreh, M., Mostafa, A.O., Al-Dabbas, M. ve Rezk, H. (2021). Magnetic refrigeration design technologies: state of the art and general perspectives. Energies, 14(15), 4662. doi: https://doi.org/10.3390/en14154662
- Aprea, C., Greco, A. ve Maiorino, A. (2016). Magnetic refrigeration: a promising new technology for energy saving. International Journal of Ambient Energy, 37(3), 294- 313. doi: https://doi.org/10.1080/01430750.2014.962088
- Ayaş, A.O. (2017). (La0.9Gd0.1)0.85Ag0.15MnO3 manyetik soğutucu malzemede kısmi Gd değişiminin yapısal, manyetik ve manyetik soğutma özellikleri üzerine etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29(2), 155-162.
- Ayaş, A.O., Çetin, S.K., Akça, G., Akyol, M. ve Ekicibil, A. (2023). Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials. Materials Today Communications, 35:105988. doi: https://doi.org/10.1016/j.mtcomm.2023.105988
- Bahl, C.R.H. ve Nielsen, K.K. (2009). The effect of demagnetization on the magnetocaloric properties of gadolinium. Journal of Applied Physics, 105(1), 013916. doi: https://doi.org/10.1063/1.3056220
- Eriksen, D., Engelbrecht, K., Bahl, C.R.H., Bjork, R., Nielsen, K.K., Insigna, A.R. ve Pryds, N. (2015). Design and experimental tests of a rotary active magnetic regenerator prototype. International Journal of Refrigeration, 58, 14-21. https://doi.org/10.1016/j.ijrefrig.2015.05.004
- Hagary, M., Shoker, Y.A., Ismail, M., Moustafa, A.M., Abd-El Aal, A. ve Ramadan, A.A. (2009). Magnetocaloric effect in manganite perovskites La0.77Sr0.23Mn1-xCuxO3 (0.1 ≤ x ≤ 0.3). Solid State Communications, 149, 184-187. doi: https://doi.org/10.1016/j.ssc.2008.11.023
- Kokila, P., Kanagaraj, M., Kumar, P.S., Peter, S.C., Sekar, C. ve Therese, H.A. (2018). Structural, magnetic and magnetocaloric properties of EuMnO3 perovskite manganite: A comprehensive MCE study. Material Search Express, 5(2), 026107. doi: https://doi.org/10.1088/2053-1591/aaacdc
- Kumar, P., Rubi, Km. ve Mahendiran, R. (2016). Room temperature giant magnetoimpedance in polycrystalline La0.75Ba0.25MnO3. AIP Advances, 6(5), 055913. doi: https://doi.org/10.1063/1.4943244
- Li, C., Zhou, J., Cao, Y., Zhong, J., Liu, Y., Kang, C. ve Tan, Y. (2014). Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Applied Energy, 117, 149-156. doi: https://doi.org/10.1016/j.apenergy.2013.11.057
- Pecharsky, V.K. ve Gschneidner, K.A. (1999). Magnetocaloric effect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials, 200, 44-46. doi: https://doi.org/10.1016/S0304-8853(99)00397-2
- Phan, M.H. ve Yu, S.C. (2007). Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, 308(2), 325-340. doi: https://doi.org/10.1016/j.jmmm.2006.07.025
- Rowe, A. ve Tura, A. (2006). Investigation of three-material layered active magnetic regenerator. International Journal of Refrigeration, 29(8), 1286-1293. doi: https://doi.org/10.1016/j.ijrefrig.2006.07.012
- Samancıoğlu, Y. (2018). Manyetokalorik etki gösteren La0.67Ba0.33MnO3 perovskit manganit bileşiğinin manyetik soğutma teknolojisinde kullanılabilirliğinin incelenmesi. BAUN Fen Bilimleri Enstitüsü Dergisi, 23(2), 389-401. doi: https://doi.org/10.25092/baunfbed.845922
- Ünlü, C.G., (2018). La0.7Nd0.1K0.2MnO3 perovskit manganit bileşiğinin yapısal ve manyetik akışkan hipertermi özelliğinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6, 1335-1343. doi: https://doi.org/10.29130/dubited.411328
- Wang, Y., Qin, H., Ren, S. ve Hu, J. (2013). Giant magnetoimpedance and grain boundary effect in La0.75Ba0.25MnO3 sol-gel manganite. Physica B: Condensed Matter, 425, 17-22. doi: https://doi.org/10.1016/j.physb.2013.05.014
- Vuarnoz, D., Kitanovski, A., Gonin, C., Egolf, P.W. ve Kawanami, T. (2011). Modelling and simulation of the operation of a rotary magnetic refrigerator. Journal of Thermal Science and Technology, 6(1), 21-33. doi: https://doi.org/10.1299/jtst.6.21
- Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z. ve Chen, Z. (2003). Review on research of room temperature magnetic refrigeration. International Journal of Refrigeration, 26, 622-636. doi: https://doi.org/10.1016/S0140-7007(03)00048-3
- Zimm, C., Jasrtrab, A., Sternberg, A., Pecharsky, V., Gschneidner K., Osborne, M. ve Anderson, I. (1998). Description and performance of a near-room temperature magnetic refrigerator. In Advances in Cryogenic Engineering, 43, 1759-1766. doi: https://doi.org/10.1007/978-1-4757-9047-4_222
Gd ve La0.75Ba0.25MnO3 BİLEŞİĞİNİN YAPISAL ÖZELLİKLERİNİN VE MANYETİK SOĞUTMA PERFORMANSLARININ DENEYSEL OLARAK ARAŞTIRILMASI
Year 2025,
Volume: 33 Issue: 1, 1648 - 1655, 24.04.2025
Arda Zaim
,
Haydar Aras
,
Cumhur Gökhan Ünlü
Abstract
Çalışmada oda sıcaklığına yakın sıcaklıklarda çalışan manyetik soğutma sistemlerinde manyetokalorik malzeme olarak kullanılan Gd elementinin ve La0.75Ba0.25MnO3 perovskit manganit bileşiğinin yapısal özellikleri ve manyetik soğutma performansı deneysel olarak incelenmiştir. La0.75Ba0.25MnO3 perovskit manganit bileşiği sol-jel yöntemiyle sentezlenmiş, her iki manyetokalorik malzemenin yapısal özellikleri SEM ve EDX analizi gerçekleştirilerek detaylı bir şekilde ele alınmıştır. SEM analizinde Gd elementi için tane boyutlarının homojen bir dağılıma sahip olmadığı, tane boyutlarının 2-20 µm aralığında değiştiği ve kübik benzeri formda sert köşeli bir yapıda olduğu belirlenmiş olup; La0.75Ba0.25MnO3 perovskit manganit bileşiğinde ise daha küçük tane boyutlu, küresel geometride, süngerimsi yapıda, homojen dağılımlı ve düşük boşluklu bir yapı gözlenmiştir. EDX analizinde Gd elementinde yapının tamamen Gd’den oluştuğu, sol-jel yöntemiyle sentezlenen perovskit manganit bileşiğinde istenilen yapı karakterizasyonunun elde edildiği tespit edilmiştir. 1.2 T manyetik akı yoğunluğunda gerçekleştirilen zamana bağlı sıcaklık değişimi deneylerinde 250 çevrim sonrasında kritik kullanım faktörü olarak tanımlanan φ=15’de; Gd elementinde 2.204 K, La0.75Ba0.25MnO3 perovskit manganit bileşiğinde ise 1.472 K sıcaklık farkı elde edilmiştir.
Ethical Statement
Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumuzu beyan ederiz.
Supporting Institution
Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
FOA-2021-2224
Thanks
Bu çalışma Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FOA-2021-2224 nolu proje kapsamında desteklenmiştir.
References
- Alahmer, A., Al-Amayreh, M., Mostafa, A.O., Al-Dabbas, M. ve Rezk, H. (2021). Magnetic refrigeration design technologies: state of the art and general perspectives. Energies, 14(15), 4662. doi: https://doi.org/10.3390/en14154662
- Aprea, C., Greco, A. ve Maiorino, A. (2016). Magnetic refrigeration: a promising new technology for energy saving. International Journal of Ambient Energy, 37(3), 294- 313. doi: https://doi.org/10.1080/01430750.2014.962088
- Ayaş, A.O. (2017). (La0.9Gd0.1)0.85Ag0.15MnO3 manyetik soğutucu malzemede kısmi Gd değişiminin yapısal, manyetik ve manyetik soğutma özellikleri üzerine etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29(2), 155-162.
- Ayaş, A.O., Çetin, S.K., Akça, G., Akyol, M. ve Ekicibil, A. (2023). Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials. Materials Today Communications, 35:105988. doi: https://doi.org/10.1016/j.mtcomm.2023.105988
- Bahl, C.R.H. ve Nielsen, K.K. (2009). The effect of demagnetization on the magnetocaloric properties of gadolinium. Journal of Applied Physics, 105(1), 013916. doi: https://doi.org/10.1063/1.3056220
- Eriksen, D., Engelbrecht, K., Bahl, C.R.H., Bjork, R., Nielsen, K.K., Insigna, A.R. ve Pryds, N. (2015). Design and experimental tests of a rotary active magnetic regenerator prototype. International Journal of Refrigeration, 58, 14-21. https://doi.org/10.1016/j.ijrefrig.2015.05.004
- Hagary, M., Shoker, Y.A., Ismail, M., Moustafa, A.M., Abd-El Aal, A. ve Ramadan, A.A. (2009). Magnetocaloric effect in manganite perovskites La0.77Sr0.23Mn1-xCuxO3 (0.1 ≤ x ≤ 0.3). Solid State Communications, 149, 184-187. doi: https://doi.org/10.1016/j.ssc.2008.11.023
- Kokila, P., Kanagaraj, M., Kumar, P.S., Peter, S.C., Sekar, C. ve Therese, H.A. (2018). Structural, magnetic and magnetocaloric properties of EuMnO3 perovskite manganite: A comprehensive MCE study. Material Search Express, 5(2), 026107. doi: https://doi.org/10.1088/2053-1591/aaacdc
- Kumar, P., Rubi, Km. ve Mahendiran, R. (2016). Room temperature giant magnetoimpedance in polycrystalline La0.75Ba0.25MnO3. AIP Advances, 6(5), 055913. doi: https://doi.org/10.1063/1.4943244
- Li, C., Zhou, J., Cao, Y., Zhong, J., Liu, Y., Kang, C. ve Tan, Y. (2014). Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Applied Energy, 117, 149-156. doi: https://doi.org/10.1016/j.apenergy.2013.11.057
- Pecharsky, V.K. ve Gschneidner, K.A. (1999). Magnetocaloric effect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials, 200, 44-46. doi: https://doi.org/10.1016/S0304-8853(99)00397-2
- Phan, M.H. ve Yu, S.C. (2007). Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, 308(2), 325-340. doi: https://doi.org/10.1016/j.jmmm.2006.07.025
- Rowe, A. ve Tura, A. (2006). Investigation of three-material layered active magnetic regenerator. International Journal of Refrigeration, 29(8), 1286-1293. doi: https://doi.org/10.1016/j.ijrefrig.2006.07.012
- Samancıoğlu, Y. (2018). Manyetokalorik etki gösteren La0.67Ba0.33MnO3 perovskit manganit bileşiğinin manyetik soğutma teknolojisinde kullanılabilirliğinin incelenmesi. BAUN Fen Bilimleri Enstitüsü Dergisi, 23(2), 389-401. doi: https://doi.org/10.25092/baunfbed.845922
- Ünlü, C.G., (2018). La0.7Nd0.1K0.2MnO3 perovskit manganit bileşiğinin yapısal ve manyetik akışkan hipertermi özelliğinin araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6, 1335-1343. doi: https://doi.org/10.29130/dubited.411328
- Wang, Y., Qin, H., Ren, S. ve Hu, J. (2013). Giant magnetoimpedance and grain boundary effect in La0.75Ba0.25MnO3 sol-gel manganite. Physica B: Condensed Matter, 425, 17-22. doi: https://doi.org/10.1016/j.physb.2013.05.014
- Vuarnoz, D., Kitanovski, A., Gonin, C., Egolf, P.W. ve Kawanami, T. (2011). Modelling and simulation of the operation of a rotary magnetic refrigerator. Journal of Thermal Science and Technology, 6(1), 21-33. doi: https://doi.org/10.1299/jtst.6.21
- Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z. ve Chen, Z. (2003). Review on research of room temperature magnetic refrigeration. International Journal of Refrigeration, 26, 622-636. doi: https://doi.org/10.1016/S0140-7007(03)00048-3
- Zimm, C., Jasrtrab, A., Sternberg, A., Pecharsky, V., Gschneidner K., Osborne, M. ve Anderson, I. (1998). Description and performance of a near-room temperature magnetic refrigerator. In Advances in Cryogenic Engineering, 43, 1759-1766. doi: https://doi.org/10.1007/978-1-4757-9047-4_222