Research Article
BibTex RIS Cite

Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule

Year 2022, Volume: 7 Issue: 1, 1 - 9, 17.06.2022
https://doi.org/10.56171/ojn.1004702

Abstract

Acalabrutinib is an inhibitor of Bruton's tyrosine kinase (BTK) activity and prevents the activation of the B-cell antigen receptor (BCR) signaling pathway. For having these properties acalabrutinib recently was approved for medical use as an anticancer drug. Determining the conformational properties of a bioactive molecule is necessary to reveal its bioactivity. For this reason, the conformational states of the acalabrutinib were examined first. The AM1, a semi-experimental method, was used to examine the stable conformations of the acalabrutinib molecule. Nine lowest energy conformers of the acalabrutinib molecule were determined and their relative energies were calculated. Afterwards, the interactions of the most stable conformer of acalabrutinib with DNA and integrin were examined by docking simulations, and the most active interaction sites and binding affinities were determined.

Supporting Institution

IOCENS Gümüşhane University International Online Conference on ENGINEERING and NATURAL SCIENCES

References

  • Satterthwaite A.B. Bruton’s Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus, Frontiers in Immunology, 8 (2018) 1-10. Article No 1986.
  • Acalabrutinib Monograph for Professionals, Drugs.com. Retrieved 16 March 2019.
  • Barf, T., Covey, T., Izumi, R., van de Kar, B., Gulrajani, M., van Lith, B., ... & Kaptein, A. (2017). Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. Journal of Pharmacology and Experimental Therapeutics, 363(2), 240-252.
  • Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.
  • Cang S, Iragavarapu C, Savooji J, Song Y, Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol. 2015;8(1):129.
  • Novero A, Ravella PM, Chen Y, Dous G, Liu D. Ibrutinib for B cell malignancies. Experimental Hematology & Oncology. 2014;3(1):1–7.
  • Covey T, Barf T, Gulrajani M, Krantz F, van Lith B, Bibikova E, et al. Abstract 2596: ACP-196: a novel covalent Bruton’s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. Cancer Res. 2015;75(15 Supplement):2596.
  • Walter HS, Rule SA, Dyer MJS, Karlin L, Jones C, Cazin B, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.
  • The New England Journal of Medicine 374;4 nejm.org January 28, 2016.
  • Ferit Avcu, Kll Tedavisinde Gelecek: Hedefe Yönelik Yeni Moleküller XXXIX. Ulusal Hematoloji Kongresi.
  • Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015; 372(15):1430–40.
  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.
  • Brown JR, Barrientos JC, Barr PM, Flinn IW, Burger JA, Tran A, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125(19):2915–22.
  • Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.
  • https://pubchem.ncbi.nlm.nih.gov/compound/71226662
  • Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy dis- continuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol 2015;1:80-7.
  • Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lym- phocytic leukemia after discontinuing ibrutinib. Blood 2015;125:2062-7. ClinicalTrials.gov number, NCT02477696
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., ... & DiStasio Jr, R. A. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics,8(27), 3172-3191.
  • Devar, M.J.S.;Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. AM1: A new General purposequantum mechanical molecular model.J. Am. Chem. Soc.1985, 107, 3902-3909.
  • Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.;... Pavelka, A. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 2018, 34, 3586-3588.
  • Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem. 2010,31, 455-461.
  • OSIRIS. (2010).OSIRIS Property Explorer. Actelion Pharmaceuticals Ltd. http://www. https://www.organic-chemistry.org/prog/peo/
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., &Dickerson, R. E. (1981). Structure of a B-DNA dodecamer:Conformation and dynamics.Proceedings of the National Academy ofSciences,78(4), 2179–2183.
  • Celik, S., Yilmaz, G., Ozel, A. E., & Akyuz, S. (2020). Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide. Journal of Biomolecular Structure and Dynamics, 1-13.
  • Akalin, E., Celik, S., & Akyuz, S. (2020). Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil. Journal of Applied Spectroscopy, 86(6), 975-985.
  • Arif, R., Rana, M., Yasmeen, S., Khan, M. S., Abid, M., & Khan, M. S. (2020). Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. Journal of Molecular Structure, 1208, 127905.
  • W. Xia, T.A. Springer, Metal ion and ligand binding of Integrin α5β1, PNAS 111 (2014) 17863-17868, http://doi.org/10.1073/pnas.1420645111.
  • Gasymov, O. K., Celik, S., Agaeva, G., Akyuz, S., Kecel-Gunduz, S., Qocayev, N. M., ... & Aliyev, J. A. (2021). Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. Journal of Molecular Graphics and Modelling, 108, 107999.
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., ... & Hou, T. (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods. Bioinformatics, 35(10), 1777-1779.
  • Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., & Yang, G. F. (2016). ACFIS: a web server for fragment-based drug discovery. Nucleic acids research, 44(W1), W550-W556.
  • Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., ... & Yang, G. F. (2012). Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex. Journal of the American Chemical Society, 134(27), 11168-11176.
  • Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., ... & Yang, G. F. (2018). PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. Journal of chemical information and modeling, 58(9), 1725-1730.
  • Cheron, N., Jasty, N., & Shakhnovich, E. I. (2016). OpenGrowth: an automated and rational algorithm for finding new protein ligands. Journal of medicinal chemistry, 59(9), 4171-4188.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical reviews, 119(16), 9478-9508.

Antikanser Acalabrutinib Molekülünün Konformasyonel, Toksik, Fizikokimyasal ve Moleküler Kenetlenme Analizi

Year 2022, Volume: 7 Issue: 1, 1 - 9, 17.06.2022
https://doi.org/10.56171/ojn.1004702

Abstract

Acalabrutinib, Bruton'un tirozin kinaz (BTK) aktivitesinin bir inhibitörüdür ve B hücresi antijen reseptörü (BCR) sinyal yolunun aktivasyonunu önler. Acalabrutinib bu özelliklere sahip olduğu için yakın zamanda bir antikanser ilacı olarak tıbbi kullanım için onaylanmıştır. Biyoaktif bir molekülün konformasyonel özelliklerinin belirlenmesi, biyoaktivitesini ortaya çıkarmak için gereklidir. Bu nedenle öncelikle acalabrutinib'in konformasyonel durumları incelenmiştir. Acalabrutinib molekülünün kararlı yapılarını incelemek için yarı deneysel bir yöntem olan AM1 kullanılmıştır. Acalabrutinib molekülünün en düşük enerjili dokuz konformeri belirlenmiştir ve bağıl enerjileri hesaplanmıştır. Daha sonra acalabrutinib'in en kararlı konformerinin DNA ve integrin ile etkileşimleri kenetlenme simülasyonları ile incelenmiş ve en aktif etkileşim bölgeleri ve bağlanma afiniteleri belirlenmiştir.

References

  • Satterthwaite A.B. Bruton’s Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus, Frontiers in Immunology, 8 (2018) 1-10. Article No 1986.
  • Acalabrutinib Monograph for Professionals, Drugs.com. Retrieved 16 March 2019.
  • Barf, T., Covey, T., Izumi, R., van de Kar, B., Gulrajani, M., van Lith, B., ... & Kaptein, A. (2017). Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. Journal of Pharmacology and Experimental Therapeutics, 363(2), 240-252.
  • Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.
  • Cang S, Iragavarapu C, Savooji J, Song Y, Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol. 2015;8(1):129.
  • Novero A, Ravella PM, Chen Y, Dous G, Liu D. Ibrutinib for B cell malignancies. Experimental Hematology & Oncology. 2014;3(1):1–7.
  • Covey T, Barf T, Gulrajani M, Krantz F, van Lith B, Bibikova E, et al. Abstract 2596: ACP-196: a novel covalent Bruton’s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. Cancer Res. 2015;75(15 Supplement):2596.
  • Walter HS, Rule SA, Dyer MJS, Karlin L, Jones C, Cazin B, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.
  • The New England Journal of Medicine 374;4 nejm.org January 28, 2016.
  • Ferit Avcu, Kll Tedavisinde Gelecek: Hedefe Yönelik Yeni Moleküller XXXIX. Ulusal Hematoloji Kongresi.
  • Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015; 372(15):1430–40.
  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.
  • Brown JR, Barrientos JC, Barr PM, Flinn IW, Burger JA, Tran A, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125(19):2915–22.
  • Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.
  • https://pubchem.ncbi.nlm.nih.gov/compound/71226662
  • Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy dis- continuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol 2015;1:80-7.
  • Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lym- phocytic leukemia after discontinuing ibrutinib. Blood 2015;125:2062-7. ClinicalTrials.gov number, NCT02477696
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., ... & DiStasio Jr, R. A. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics,8(27), 3172-3191.
  • Devar, M.J.S.;Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. AM1: A new General purposequantum mechanical molecular model.J. Am. Chem. Soc.1985, 107, 3902-3909.
  • Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.;... Pavelka, A. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 2018, 34, 3586-3588.
  • Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem. 2010,31, 455-461.
  • OSIRIS. (2010).OSIRIS Property Explorer. Actelion Pharmaceuticals Ltd. http://www. https://www.organic-chemistry.org/prog/peo/
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., &Dickerson, R. E. (1981). Structure of a B-DNA dodecamer:Conformation and dynamics.Proceedings of the National Academy ofSciences,78(4), 2179–2183.
  • Celik, S., Yilmaz, G., Ozel, A. E., & Akyuz, S. (2020). Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide. Journal of Biomolecular Structure and Dynamics, 1-13.
  • Akalin, E., Celik, S., & Akyuz, S. (2020). Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil. Journal of Applied Spectroscopy, 86(6), 975-985.
  • Arif, R., Rana, M., Yasmeen, S., Khan, M. S., Abid, M., & Khan, M. S. (2020). Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. Journal of Molecular Structure, 1208, 127905.
  • W. Xia, T.A. Springer, Metal ion and ligand binding of Integrin α5β1, PNAS 111 (2014) 17863-17868, http://doi.org/10.1073/pnas.1420645111.
  • Gasymov, O. K., Celik, S., Agaeva, G., Akyuz, S., Kecel-Gunduz, S., Qocayev, N. M., ... & Aliyev, J. A. (2021). Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. Journal of Molecular Graphics and Modelling, 108, 107999.
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., ... & Hou, T. (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods. Bioinformatics, 35(10), 1777-1779.
  • Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., & Yang, G. F. (2016). ACFIS: a web server for fragment-based drug discovery. Nucleic acids research, 44(W1), W550-W556.
  • Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., ... & Yang, G. F. (2012). Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex. Journal of the American Chemical Society, 134(27), 11168-11176.
  • Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., ... & Yang, G. F. (2018). PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. Journal of chemical information and modeling, 58(9), 1725-1730.
  • Cheron, N., Jasty, N., & Shakhnovich, E. I. (2016). OpenGrowth: an automated and rational algorithm for finding new protein ligands. Journal of medicinal chemistry, 59(9), 4171-4188.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical reviews, 119(16), 9478-9508.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering, Chemical Engineering
Journal Section Research Article
Authors

Sefa Çelik 0000-0001-6216-1297

A. Demet Demirag 0000-0002-9609-9150

Samet Arslan 0000-0003-2164-3905

Ayşen Özel 0000-0002-8680-8830

Sevim Akyüz 0000-0003-3313-6927

Early Pub Date March 3, 2022
Publication Date June 17, 2022
Submission Date October 5, 2021
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Çelik, S., Demirag, A. D., Arslan, S., Özel, A., et al. (2022). Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule. Open Journal of Nano, 7(1), 1-9. https://doi.org/10.56171/ojn.1004702
AMA Çelik S, Demirag AD, Arslan S, Özel A, Akyüz S. Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule. OJN. June 2022;7(1):1-9. doi:10.56171/ojn.1004702
Chicago Çelik, Sefa, A. Demet Demirag, Samet Arslan, Ayşen Özel, and Sevim Akyüz. “Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule”. Open Journal of Nano 7, no. 1 (June 2022): 1-9. https://doi.org/10.56171/ojn.1004702.
EndNote Çelik S, Demirag AD, Arslan S, Özel A, Akyüz S (June 1, 2022) Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule. Open Journal of Nano 7 1 1–9.
IEEE S. Çelik, A. D. Demirag, S. Arslan, A. Özel, and S. Akyüz, “Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule”, OJN, vol. 7, no. 1, pp. 1–9, 2022, doi: 10.56171/ojn.1004702.
ISNAD Çelik, Sefa et al. “Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule”. Open Journal of Nano 7/1 (June 2022), 1-9. https://doi.org/10.56171/ojn.1004702.
JAMA Çelik S, Demirag AD, Arslan S, Özel A, Akyüz S. Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule. OJN. 2022;7:1–9.
MLA Çelik, Sefa et al. “Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule”. Open Journal of Nano, vol. 7, no. 1, 2022, pp. 1-9, doi:10.56171/ojn.1004702.
Vancouver Çelik S, Demirag AD, Arslan S, Özel A, Akyüz S. Conformational, Toxic, Physicochemical and Molecular Docking Analysis of the Anticancer Acalabrutinib Molecule. OJN. 2022;7(1):1-9.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.