Review
BibTex RIS Cite

Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum

Year 2019, Volume: 2 Issue: 1, 45 - 52, 30.12.2019

Abstract

Düşük
sıcaklıklar tüm dünyada bitki türlerinin coğrafi dağılımını ve ekonomik
bitkilerin verimini büyük ölçüde azaltmaktadır. Bazı bitkiler düşük sıcaklığa
duyarlıdır ve soğuk stresi koşullarında dehidrasyona uğrayabilir. Ayrıca soğuk
stresi duyarlı bitkilerde oksidatif strese, yüksek protoplazmik viskositeye ve
katabolizmaya ve fotosentez hızının azalmasına neden olur. Bazı bitkiler de
düşük sıcaklığa toleranslıdır ve eğer uygun bir süre düşük fakat dondurucu
olmayan sıcaklıklara maruz bırakılırsa soğuğa uyum sağlayabilirler. Soğuğa uyum
boyunca antioksidant enzimlerin aktivasyonu, çözünür şeker, absisik asit ve
prolin birikimi, büyümenin durması, rozet gövde oluşumu, membran
kompozisyonunda değişimler ve su kaybı gibi metabolik değişimler gözlenir. Bu
derlemede soğuğa toleranslı bitkilerde soğuk uyumu boyunca meydana gelen
morfolojik, fizyolojik ve biyokimyasal değişimler tartışılmıştır. 

References

  • [1] Seki M., Kamei A., Yamaguchi-Shinozaki K. ve Shinozaki, K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 2003; 14: 194-199.
  • [2] Vij S., Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal 2007; 5: 361-380.
  • [3] Mahajan, S., Tuteja N. Cold, salinity and drought stresses: an overview. Archieves of Biochemistry and Biophysics 2005; 444: 139-158.
  • [4] Alberdi M., Corcuera LJ. Cold acclimation in plants. Phytochemistry 1991; 30: 3177-3184.
  • [5] Larcher W. Physiological Plant Physiology. Berlin: Springer-Verlag; 1995.
  • [6] Duncan RR. Plant-Environment Interactions. New York: Marcel Dekker; 2000.
  • [7] Hale MG., Orcutt DM. The Physiology of Plants under Stress. New York: John Wiley & Sons Inc; 1987.
  • [8] Rajashekar CB. Plant-Environment Interactions. New York: Marcel Dekker; 2000.
  • [9] Sutka J., Galiba G. Abiotic Stresses: Cold Stress. Encyclopedia of Applied Plant Sciences 2003; 12: 1-9.
  • [10] Doğru, A. (2006). Kolza (Brassica napus L. ssp. oleifera)’nın bazı kışlık çeşitlerinde düşük sıcaklık toleransı ile ilgili fizyolojik ve biyokimyasal parametrelerin araştırılması. (Yayımlanmamış doktora tezi). Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [11] Lukatkin AS. Initiation and development of chilling injury in leaves of chilling-sensitive plants. Russian Journal of Plant Physiology 2005; 52: 608-613.
  • [12] Henkel PA., Kushnirenko SV. Plant cold tolerance and its elevation by heat treatments. Moscow: Nauka; 1966.
  • [13] Lyons JM. Chilling injury in plants. Annual Review of Plant Physiology 1973; 24: 445-466.
  • [14] Terzaghi WB., Fork DC., Berry JA., Field CB. Low and high temperature limits to PS II: A survey using transparinaric acid, delayed light emission and Fo chlorophyll fluorescence. Plant Physiology 1989; 91: 1494-1500.
  • [15] Minorsky PV. An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer of injury. Plant Cell and Environment 1985: 8; 75-94.
  • [16] Alam B., Jacob J. Overproduction of photosynthetic electrons is associated with chilling injury in gren leaves. Photosynthetica 2002: 40; 91-95.
  • [17] Takac T. The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. Plant and Soil Environment 2004: 50; 27- 32.
  • [18] Pearce RS. Molecular analysis of acclimation to cold. Plant Growth Regulation 1999: 29; 47-76.
  • [19] Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology Plant Molecular Biology 1990: 41; 187-223.
  • [20] Hughes MA., Pearce R.S. Low temperature treatment of barley plants causes altered gene expression in leaf meristems. Journal of Experimental Botany 1988: 39; 1461-1467.
  • [21] Xin Z., Browse J. Cold comfort farm: the acclimation of plants to freezing temperature. Plant, Cell and Environment 2000: 23; 893-902.
  • [22] Gray GR., Cauvin LP., Sarhan F., Huner NPA. Cold acclimation and freezing tolerance. A complex interaction of light and temperature. Plant Physiology 1997: 114; 467-474.
  • [23] Teutonico RA., Patla JP., Osborn TC. In vitro freezing tolerance in relation to winter survival of rapeseed cultivars. Crop Science 1993: 33; 103-107.
  • [24] Rapacz R., Tokarz K., Janowiak F. The initiation of elongation growth during long-term low-temperature stay of spring-type oilseed rape may trigger loss of frost resistance and changes in photosynthetic apparatus. Plant Science 2001: 161; 221-230.
  • [25] Rapacz M. Frost resistance and cold acclimation abilities of spring-type oilseed rape. Plant Science 1999: 147; 55-64.
  • [26] Andersson G., Olsson G. Criciferous oilseeds. Berlin: Paul Barey, 1961.
  • [27] Levitt J. Responses of Plant to Environmental Stresses. New York: Academic Press, 1972.
  • [28] Rapacz M. Regulation of frost resistance during cold de-acclimation and re-acclimation in oilseed rape. A possible role of PSII redox state. Physiologia Plantarum 2002: 115; 236-243.
  • [29] Fowler DB., Gusta LV., Tyler NJ. Selection for winter hardiness in wheat. III. Screening methods. Crop Science 1981: 21; 896-901.
  • [30] Limin AE., Fowler DB. Morphological and cytological characters associated with low-temperature tolerance in wheat (Triticum aestivum L.). Canadian Journal of Plant Science 2000: 80; 687-692.
  • [31] Huner NPA., Patla JP., Li PH., Carter JV. Anatomical changes in leaves of Puma rye in response to growth at cold-hardening temperatures. Botanical Gazette 1981: 142; 55-62.
  • [32] Griffith M., Huner NPA, Espelle KE. Kolattukudy PE. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 1985: 125; 53-64.
  • [33] Kubacka-Zebelska M., Kacperska A. Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus L. var. oleifera L.). Plant Science 1999: 148; 59-67.
  • [34] Wanner LA., Juntilla O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiology 1999: 120; 391-400.
  • [35] Klimov SV., Popov VN., Dubinina IM., Burakhanova EA., Trunova, TI. The decreased cold resistance of chilling-sensitive plants is related to suppressed CO2 assimilation in leaves and sugar accumulation in roots. Russian Journal of Plant Physiology 2002: 49; 776-781.
  • [36] Murelli C., Rizza F., Albini FM., Dulio A., Terzi V., Cattivelli L. Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologiae Plantarum 1995: 94; 87-93.
  • [37] Sasaki H., Ishimura K., Oda M. Changes in sugar content during cold acclimation and deacclimation of cabbage. Annals of Botany 1996: 78; 365-369.
  • [38] Travert S., Valerio L., Fouraste I., Boudet AM., Teulieres C. Enrichment in spesific soluble sugars of two eucalyptus cell-suspension cultures by various treatments enhances their frost tolerance via a noncolligative mechanism. Plant Physiology 1997: 114; 1433-1442.
  • [39] McKown R., Kuroki G., Warren G. Cold responses of Arabidopsis mutants impaired in freezing tolerance. Journal of Experimental Botany 1996: 47; 1919-1925.
  • [40] Xin Z., Browse J. eskimo1 mutants of Arabidopsis are constitutively freezing tolerant. Proceeding of the National Academy of Science 1998: 95; 7799-7804.
  • [41] Hincha DK., Sonnewald U., Willmitzer L., Schmitt, JM. The role of sugar accumulation in leaf frost hardiness: investigations with transgenic tobacco expressing a bacterial pyrophosphatase or a yeast invertase gene. Journal of Plant Physiology 1996: 147; 604-610.
  • [42] Dörffling K., Dörffling H., Lesselich G., Luck E., Zimmermann C., Melz G., Jürgens HU. Heritable improvement of frost tolerance in winter wheat by in-vitro-selection of hydroxyproline-resistance prolin overproducing mutants. Plant Molecular Biology 1997: 23; 221-225.
  • [43] Alia P., Saradhi PP., Mohanty P. Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. Journal of Photochemistry and Photobiology 1997: 38; 253-257.
  • [44] Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letter 1999: 461; 205-210.
  • [45] Ristic Z., Ashworth E.N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 1993: 171; 111-123.
  • [46] Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology Plant Molecular Biology 1984: 35; 543-584.
  • [47] Uemura M., Steponkus PL. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology 1994: 104; 479-496.
  • [48] Uemura M., Joseph RA., Steponkus PL. Cold acclimation of Arabidopsis thaliana. Effect of plasma membrane lipid composition and freeze-induced lesions. Plant Physiology 1995: 109; 15-30.
  • [49] Taiz L., Zeiger. Plant Physiology. Massachusetts: Sinauer Associates Inc Publishers, 1998.
  • [50] Rihan HZ., Al-Issawi M., Fuller MP. Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions 2017: 12; 143-157.
  • [51] Ton J., Flors V., Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends in Plant Science 2009: 14; 310-317.
  • [52] Xue-Xuan X,. Hong-Bo S., Yuan-Yuan M., Gang X., Jun-Na S., Dong-Gang G., Cheng-Jiang R. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Critical Review in Biotechnology 2010: 30; 222-230.
  • [53] Chen HH., Brenner ML., Li, PH. Involvement of abscisic acid in potato cold acclimation. Plant Physiology 1983: 71; 362-365.
  • [54] Lang V., Mantyla E., Welin B., Sundberg B., Palva, E. Alteration of water status, endogenous abscisic acid content and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiology 1994: 104; 1341-1349.
  • [55] Llorente F., Oliveros JC., Martinez-Zapater JM., Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 2000: 211; 648-655.
  • [56] Mahajan S., Tuteja N. Cold, salinity and drought stresses: an overview. Archieves of Biochemistry and Biophysics 2005: 444; 139-158.
  • [57] Xiong L., Ishitani M., Lee H., Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress– and osmotic stress-responsive gene expression. Plant Cell Online 2001: 13; 2063-2083.
  • [58] Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal and Behaviour 2007: 2; 135-138.
  • [59] Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 2000: 3; 217-223.
  • [60] Finkelstein RR., Gampala SSL., Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell Online 2002: 14; 15-45.
  • [61] Bies-Etheve N., Gaubier-Comella P., Debures A., Lasserre E., Jobet E., Raynal M., Cooke R., Delseny M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology 2008: 67; 107-124.
  • [62] Wan SB., Tian L., Tian RR., Pan QH., Zhan JC., Wen PF., Chen JY., Zhang P., Wang W., Huang, WD. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physiology and Biochemistry 2009: 47; 504-510.
  • [63] Miura K., Ohta M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology 2010: 167; 555-560.
  • [64] Niu S., Gao Q., Li Z., Chen X., Li W. The role of gibberellin in the CBF1-mediated stress-response pathway. Plant Molecular Biology Report 2014: 32; 852-863.
  • [65] Cao S., Zheng Y., Wang K., Jin P., Rui H. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry 2009: 115; 1458-1463.
  • [66] Thomashow MF. Plant cold acclimation: freezing tolerance gene and regulatory mechanisms. Annual Review of Plant Physiology Plant Molecular Biology 1999: 50; 571-599.
  • [67] Griffith M., Yaish MWF. Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science 2004: 9; 399-405.
  • [68] Jaglo KR., Kleff S., Amundsen KL., Zhang X., Hake V., Xhang Z., Deits T., Thomashow MF. Components of the Arabidopsis C repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology 2001: 127; 910-917.
Year 2019, Volume: 2 Issue: 1, 45 - 52, 30.12.2019

Abstract

References

  • [1] Seki M., Kamei A., Yamaguchi-Shinozaki K. ve Shinozaki, K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 2003; 14: 194-199.
  • [2] Vij S., Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal 2007; 5: 361-380.
  • [3] Mahajan, S., Tuteja N. Cold, salinity and drought stresses: an overview. Archieves of Biochemistry and Biophysics 2005; 444: 139-158.
  • [4] Alberdi M., Corcuera LJ. Cold acclimation in plants. Phytochemistry 1991; 30: 3177-3184.
  • [5] Larcher W. Physiological Plant Physiology. Berlin: Springer-Verlag; 1995.
  • [6] Duncan RR. Plant-Environment Interactions. New York: Marcel Dekker; 2000.
  • [7] Hale MG., Orcutt DM. The Physiology of Plants under Stress. New York: John Wiley & Sons Inc; 1987.
  • [8] Rajashekar CB. Plant-Environment Interactions. New York: Marcel Dekker; 2000.
  • [9] Sutka J., Galiba G. Abiotic Stresses: Cold Stress. Encyclopedia of Applied Plant Sciences 2003; 12: 1-9.
  • [10] Doğru, A. (2006). Kolza (Brassica napus L. ssp. oleifera)’nın bazı kışlık çeşitlerinde düşük sıcaklık toleransı ile ilgili fizyolojik ve biyokimyasal parametrelerin araştırılması. (Yayımlanmamış doktora tezi). Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [11] Lukatkin AS. Initiation and development of chilling injury in leaves of chilling-sensitive plants. Russian Journal of Plant Physiology 2005; 52: 608-613.
  • [12] Henkel PA., Kushnirenko SV. Plant cold tolerance and its elevation by heat treatments. Moscow: Nauka; 1966.
  • [13] Lyons JM. Chilling injury in plants. Annual Review of Plant Physiology 1973; 24: 445-466.
  • [14] Terzaghi WB., Fork DC., Berry JA., Field CB. Low and high temperature limits to PS II: A survey using transparinaric acid, delayed light emission and Fo chlorophyll fluorescence. Plant Physiology 1989; 91: 1494-1500.
  • [15] Minorsky PV. An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer of injury. Plant Cell and Environment 1985: 8; 75-94.
  • [16] Alam B., Jacob J. Overproduction of photosynthetic electrons is associated with chilling injury in gren leaves. Photosynthetica 2002: 40; 91-95.
  • [17] Takac T. The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. Plant and Soil Environment 2004: 50; 27- 32.
  • [18] Pearce RS. Molecular analysis of acclimation to cold. Plant Growth Regulation 1999: 29; 47-76.
  • [19] Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology Plant Molecular Biology 1990: 41; 187-223.
  • [20] Hughes MA., Pearce R.S. Low temperature treatment of barley plants causes altered gene expression in leaf meristems. Journal of Experimental Botany 1988: 39; 1461-1467.
  • [21] Xin Z., Browse J. Cold comfort farm: the acclimation of plants to freezing temperature. Plant, Cell and Environment 2000: 23; 893-902.
  • [22] Gray GR., Cauvin LP., Sarhan F., Huner NPA. Cold acclimation and freezing tolerance. A complex interaction of light and temperature. Plant Physiology 1997: 114; 467-474.
  • [23] Teutonico RA., Patla JP., Osborn TC. In vitro freezing tolerance in relation to winter survival of rapeseed cultivars. Crop Science 1993: 33; 103-107.
  • [24] Rapacz R., Tokarz K., Janowiak F. The initiation of elongation growth during long-term low-temperature stay of spring-type oilseed rape may trigger loss of frost resistance and changes in photosynthetic apparatus. Plant Science 2001: 161; 221-230.
  • [25] Rapacz M. Frost resistance and cold acclimation abilities of spring-type oilseed rape. Plant Science 1999: 147; 55-64.
  • [26] Andersson G., Olsson G. Criciferous oilseeds. Berlin: Paul Barey, 1961.
  • [27] Levitt J. Responses of Plant to Environmental Stresses. New York: Academic Press, 1972.
  • [28] Rapacz M. Regulation of frost resistance during cold de-acclimation and re-acclimation in oilseed rape. A possible role of PSII redox state. Physiologia Plantarum 2002: 115; 236-243.
  • [29] Fowler DB., Gusta LV., Tyler NJ. Selection for winter hardiness in wheat. III. Screening methods. Crop Science 1981: 21; 896-901.
  • [30] Limin AE., Fowler DB. Morphological and cytological characters associated with low-temperature tolerance in wheat (Triticum aestivum L.). Canadian Journal of Plant Science 2000: 80; 687-692.
  • [31] Huner NPA., Patla JP., Li PH., Carter JV. Anatomical changes in leaves of Puma rye in response to growth at cold-hardening temperatures. Botanical Gazette 1981: 142; 55-62.
  • [32] Griffith M., Huner NPA, Espelle KE. Kolattukudy PE. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 1985: 125; 53-64.
  • [33] Kubacka-Zebelska M., Kacperska A. Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus L. var. oleifera L.). Plant Science 1999: 148; 59-67.
  • [34] Wanner LA., Juntilla O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiology 1999: 120; 391-400.
  • [35] Klimov SV., Popov VN., Dubinina IM., Burakhanova EA., Trunova, TI. The decreased cold resistance of chilling-sensitive plants is related to suppressed CO2 assimilation in leaves and sugar accumulation in roots. Russian Journal of Plant Physiology 2002: 49; 776-781.
  • [36] Murelli C., Rizza F., Albini FM., Dulio A., Terzi V., Cattivelli L. Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologiae Plantarum 1995: 94; 87-93.
  • [37] Sasaki H., Ishimura K., Oda M. Changes in sugar content during cold acclimation and deacclimation of cabbage. Annals of Botany 1996: 78; 365-369.
  • [38] Travert S., Valerio L., Fouraste I., Boudet AM., Teulieres C. Enrichment in spesific soluble sugars of two eucalyptus cell-suspension cultures by various treatments enhances their frost tolerance via a noncolligative mechanism. Plant Physiology 1997: 114; 1433-1442.
  • [39] McKown R., Kuroki G., Warren G. Cold responses of Arabidopsis mutants impaired in freezing tolerance. Journal of Experimental Botany 1996: 47; 1919-1925.
  • [40] Xin Z., Browse J. eskimo1 mutants of Arabidopsis are constitutively freezing tolerant. Proceeding of the National Academy of Science 1998: 95; 7799-7804.
  • [41] Hincha DK., Sonnewald U., Willmitzer L., Schmitt, JM. The role of sugar accumulation in leaf frost hardiness: investigations with transgenic tobacco expressing a bacterial pyrophosphatase or a yeast invertase gene. Journal of Plant Physiology 1996: 147; 604-610.
  • [42] Dörffling K., Dörffling H., Lesselich G., Luck E., Zimmermann C., Melz G., Jürgens HU. Heritable improvement of frost tolerance in winter wheat by in-vitro-selection of hydroxyproline-resistance prolin overproducing mutants. Plant Molecular Biology 1997: 23; 221-225.
  • [43] Alia P., Saradhi PP., Mohanty P. Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. Journal of Photochemistry and Photobiology 1997: 38; 253-257.
  • [44] Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letter 1999: 461; 205-210.
  • [45] Ristic Z., Ashworth E.N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 1993: 171; 111-123.
  • [46] Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology Plant Molecular Biology 1984: 35; 543-584.
  • [47] Uemura M., Steponkus PL. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology 1994: 104; 479-496.
  • [48] Uemura M., Joseph RA., Steponkus PL. Cold acclimation of Arabidopsis thaliana. Effect of plasma membrane lipid composition and freeze-induced lesions. Plant Physiology 1995: 109; 15-30.
  • [49] Taiz L., Zeiger. Plant Physiology. Massachusetts: Sinauer Associates Inc Publishers, 1998.
  • [50] Rihan HZ., Al-Issawi M., Fuller MP. Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions 2017: 12; 143-157.
  • [51] Ton J., Flors V., Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends in Plant Science 2009: 14; 310-317.
  • [52] Xue-Xuan X,. Hong-Bo S., Yuan-Yuan M., Gang X., Jun-Na S., Dong-Gang G., Cheng-Jiang R. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Critical Review in Biotechnology 2010: 30; 222-230.
  • [53] Chen HH., Brenner ML., Li, PH. Involvement of abscisic acid in potato cold acclimation. Plant Physiology 1983: 71; 362-365.
  • [54] Lang V., Mantyla E., Welin B., Sundberg B., Palva, E. Alteration of water status, endogenous abscisic acid content and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiology 1994: 104; 1341-1349.
  • [55] Llorente F., Oliveros JC., Martinez-Zapater JM., Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 2000: 211; 648-655.
  • [56] Mahajan S., Tuteja N. Cold, salinity and drought stresses: an overview. Archieves of Biochemistry and Biophysics 2005: 444; 139-158.
  • [57] Xiong L., Ishitani M., Lee H., Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress– and osmotic stress-responsive gene expression. Plant Cell Online 2001: 13; 2063-2083.
  • [58] Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal and Behaviour 2007: 2; 135-138.
  • [59] Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 2000: 3; 217-223.
  • [60] Finkelstein RR., Gampala SSL., Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell Online 2002: 14; 15-45.
  • [61] Bies-Etheve N., Gaubier-Comella P., Debures A., Lasserre E., Jobet E., Raynal M., Cooke R., Delseny M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology 2008: 67; 107-124.
  • [62] Wan SB., Tian L., Tian RR., Pan QH., Zhan JC., Wen PF., Chen JY., Zhang P., Wang W., Huang, WD. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physiology and Biochemistry 2009: 47; 504-510.
  • [63] Miura K., Ohta M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology 2010: 167; 555-560.
  • [64] Niu S., Gao Q., Li Z., Chen X., Li W. The role of gibberellin in the CBF1-mediated stress-response pathway. Plant Molecular Biology Report 2014: 32; 852-863.
  • [65] Cao S., Zheng Y., Wang K., Jin P., Rui H. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry 2009: 115; 1458-1463.
  • [66] Thomashow MF. Plant cold acclimation: freezing tolerance gene and regulatory mechanisms. Annual Review of Plant Physiology Plant Molecular Biology 1999: 50; 571-599.
  • [67] Griffith M., Yaish MWF. Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science 2004: 9; 399-405.
  • [68] Jaglo KR., Kleff S., Amundsen KL., Zhang X., Hake V., Xhang Z., Deits T., Thomashow MF. Components of the Arabidopsis C repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology 2001: 127; 910-917.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Article
Authors

Ali Doğru 0000-0003-0060-4691

Publication Date December 30, 2019
Submission Date October 17, 2019
Acceptance Date December 20, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Doğru, A. (2019). Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(1), 45-52.
AMA Doğru A. Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2019;2(1):45-52.
Chicago Doğru, Ali. “Bitkilerde Düşük Sıcaklık Stresi Ve Soğuğa Uyum”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2, no. 1 (December 2019): 45-52.
EndNote Doğru A (December 1, 2019) Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2 1 45–52.
IEEE A. Doğru, “Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 2, no. 1, pp. 45–52, 2019.
ISNAD Doğru, Ali. “Bitkilerde Düşük Sıcaklık Stresi Ve Soğuğa Uyum”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2/1 (December 2019), 45-52.
JAMA Doğru A. Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2019;2:45–52.
MLA Doğru, Ali. “Bitkilerde Düşük Sıcaklık Stresi Ve Soğuğa Uyum”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 2, no. 1, 2019, pp. 45-52.
Vancouver Doğru A. Bitkilerde Düşük Sıcaklık Stresi ve Soğuğa Uyum. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2019;2(1):45-52.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.