Research Article
BibTex RIS Cite

Su Soğutmalı Fotovoltaik Sistemin Performans Analizi

Year 2021, Volume: 4 Issue: 2, 142 - 148, 01.06.2021
https://doi.org/10.47495/okufbed.823558

Abstract

Bu çalışma ile FV panellerin çalışma sıcaklıklarını harici soğutma düzenekleri ile azaltmak suretiyle verimliliklerinin artırılması Osmaniye yöresi için gerçeklenmiştir. Güneş enerjisinden elektrik üretirken panelin sıcaklığı artmakta ve bu da panel verimini azaltmaktadır. Fotovoltaik(FV) panelin ısısı, panelin arka yüzeyine yerleştirilen bakır plaka üzerine yerleştirilmiş bakır boru sistemi ile panel ısısının düşürülmesi böylelikle verimliliğin artırılması sağlanmıştır. Ayrıca, soğutmalı ve soğutmasız panel ısıl ve elektriksel verimliliklerinin Osmaniye bölgesi şartlarında karşılaştırılması yapılmıştır. Her iki panel için aynı anda güneş ışınımı, hava / FV panel sıcaklığı, güç, akım ve gerilim gibi FV panel karakteristik değerleri ölçülmüştür. FV panellerin termal ve elektriksel enerji performansı karşılaştırmalı olarak analiz edilmiştir. Genel verim için, su soğutmalı FV sisteminin % 5.9 ile soğutmasız FV panelinden daha iyi olduğu gözlenmiştir.

References

  • 1. Bahaidarah, H.M.S., P. Gandhidasan, and M. Mahmood, Performance Evaluation of Six Configurations of a Photovoltaic (PV) String with an Integrated Non-Imaging Concentrator and Water Cooling System. 2016 Ieee 43rd Photovoltaic Specialists Conference (Pvsc), 2016: p. 844-846.
  • 2. Ali, A.H.H., Performance-cost and global warming assessments of two residential scale solar cooling systems versus a conventional one in hot arid areas. Sustainable Energy Technologies and Assessments, 2017. 20: p. 1-8.
  • 3. Fiducia, T.A.M., et al., Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nature Energy, 2019. 4(6): p. 504-511.
  • 4. Bianchini, A., et al., Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment. Renewable Energy, 2017. 111: p. 543-555.
  • 5. Kumar, P., et al., Experimental exergy analysis of water-cooled PV module. International Journal of Exergy, 2017. 23(3): p. 197-209.
  • 6. Al Tarabsheh, A., et al., Investigation of Temperature Effects in Efficiency Improvement of Non-Uniformly Cooled Photovoltaic Cells. 16th International Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (Pres'13), 2013. 35: p. 1387-1392.
  • 7. Charfi, W., et al., Performance evaluation of a solar photovoltaic system. Energy Reports, 2018. 4: p. 400-406.
  • 8. Al-Nimr, M.A., M. Bukhari, and M. Mansour, A combined CPV/T and ORC solar power generation system integrated with geothermal cooling and electrolyser/fuel cell storage unit. Energy, 2017. 133: p. 513-524.
  • 9. Bahaidarah, H., et al., Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy, 2013. 59: p. 445-453.
  • 10. Baljit, S.S.S., H.Y. Chan, and K. Sopian, Review of building integrated applications of photovoltaic and solar thermal systems. Journal of Cleaner Production, 2016. 137: p. 677-689.
  • 11. Colt, G., Performance Evaluation of a PV Panel by Rear Surface Water Active Cooling. 2016 International Conference on Applied and Theoretical Electricity (Icate), 2016.
  • 12. Matias, C.A., et al., Electrical performance evaluation of PV panel through water cooling technique. 2016 Ieee 16th International Conference on Environment and Electrical Engineering (Eeeic), 2016.
  • 13. Rajput, U.J. and J. Yang, Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renewable Energy, 2018. 116: p. 479-491.
  • 14. Bai, A., et al., Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions. Renewable & Sustainable Energy Reviews, 2016. 60: p. 1086-1099.
  • 15. Abdel-Mesih, B.S.A., A.A. Abdelrehim, and A.M.H. Khobeiz, Comparative Analysis between Water and Nanofluids as Working Fluids in Photovoltaic Thermal Collectors. Asme International Mechanical Engineering Congress and Exposition, 2014, Vol 6b, 2015.
  • 16. Ahmadi, P., I. Dincer, and M.A. Rosen, Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto, Canada. International Journal of Hydrogen Energy, 2015. 40(24): p. 7846-7854.
  • 17. Aldossary, A., S. Mahmoud, and R. Al-Dadah, Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Applied Thermal Engineering, 2016. 100: p. 490-500.
  • 18. Kesilmiş, Z., H. Erol, and M. Uçman, Power optimization in partially shaded photovoltaic systems. Tehnički glasnik, 2018. 12: p. 34-38.
Year 2021, Volume: 4 Issue: 2, 142 - 148, 01.06.2021
https://doi.org/10.47495/okufbed.823558

Abstract

References

  • 1. Bahaidarah, H.M.S., P. Gandhidasan, and M. Mahmood, Performance Evaluation of Six Configurations of a Photovoltaic (PV) String with an Integrated Non-Imaging Concentrator and Water Cooling System. 2016 Ieee 43rd Photovoltaic Specialists Conference (Pvsc), 2016: p. 844-846.
  • 2. Ali, A.H.H., Performance-cost and global warming assessments of two residential scale solar cooling systems versus a conventional one in hot arid areas. Sustainable Energy Technologies and Assessments, 2017. 20: p. 1-8.
  • 3. Fiducia, T.A.M., et al., Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nature Energy, 2019. 4(6): p. 504-511.
  • 4. Bianchini, A., et al., Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment. Renewable Energy, 2017. 111: p. 543-555.
  • 5. Kumar, P., et al., Experimental exergy analysis of water-cooled PV module. International Journal of Exergy, 2017. 23(3): p. 197-209.
  • 6. Al Tarabsheh, A., et al., Investigation of Temperature Effects in Efficiency Improvement of Non-Uniformly Cooled Photovoltaic Cells. 16th International Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (Pres'13), 2013. 35: p. 1387-1392.
  • 7. Charfi, W., et al., Performance evaluation of a solar photovoltaic system. Energy Reports, 2018. 4: p. 400-406.
  • 8. Al-Nimr, M.A., M. Bukhari, and M. Mansour, A combined CPV/T and ORC solar power generation system integrated with geothermal cooling and electrolyser/fuel cell storage unit. Energy, 2017. 133: p. 513-524.
  • 9. Bahaidarah, H., et al., Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy, 2013. 59: p. 445-453.
  • 10. Baljit, S.S.S., H.Y. Chan, and K. Sopian, Review of building integrated applications of photovoltaic and solar thermal systems. Journal of Cleaner Production, 2016. 137: p. 677-689.
  • 11. Colt, G., Performance Evaluation of a PV Panel by Rear Surface Water Active Cooling. 2016 International Conference on Applied and Theoretical Electricity (Icate), 2016.
  • 12. Matias, C.A., et al., Electrical performance evaluation of PV panel through water cooling technique. 2016 Ieee 16th International Conference on Environment and Electrical Engineering (Eeeic), 2016.
  • 13. Rajput, U.J. and J. Yang, Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renewable Energy, 2018. 116: p. 479-491.
  • 14. Bai, A., et al., Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions. Renewable & Sustainable Energy Reviews, 2016. 60: p. 1086-1099.
  • 15. Abdel-Mesih, B.S.A., A.A. Abdelrehim, and A.M.H. Khobeiz, Comparative Analysis between Water and Nanofluids as Working Fluids in Photovoltaic Thermal Collectors. Asme International Mechanical Engineering Congress and Exposition, 2014, Vol 6b, 2015.
  • 16. Ahmadi, P., I. Dincer, and M.A. Rosen, Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto, Canada. International Journal of Hydrogen Energy, 2015. 40(24): p. 7846-7854.
  • 17. Aldossary, A., S. Mahmoud, and R. Al-Dadah, Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Applied Thermal Engineering, 2016. 100: p. 490-500.
  • 18. Kesilmiş, Z., H. Erol, and M. Uçman, Power optimization in partially shaded photovoltaic systems. Tehnički glasnik, 2018. 12: p. 34-38.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section RESEARCH ARTICLES
Authors

Halil Erol 0000-0001-6171-0362

Publication Date June 1, 2021
Submission Date November 9, 2020
Acceptance Date April 1, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Erol, H. (2021). Su Soğutmalı Fotovoltaik Sistemin Performans Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2), 142-148. https://doi.org/10.47495/okufbed.823558
AMA Erol H. Su Soğutmalı Fotovoltaik Sistemin Performans Analizi. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. June 2021;4(2):142-148. doi:10.47495/okufbed.823558
Chicago Erol, Halil. “Su Soğutmalı Fotovoltaik Sistemin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4, no. 2 (June 2021): 142-48. https://doi.org/10.47495/okufbed.823558.
EndNote Erol H (June 1, 2021) Su Soğutmalı Fotovoltaik Sistemin Performans Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 2 142–148.
IEEE H. Erol, “Su Soğutmalı Fotovoltaik Sistemin Performans Analizi”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 4, no. 2, pp. 142–148, 2021, doi: 10.47495/okufbed.823558.
ISNAD Erol, Halil. “Su Soğutmalı Fotovoltaik Sistemin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4/2 (June 2021), 142-148. https://doi.org/10.47495/okufbed.823558.
JAMA Erol H. Su Soğutmalı Fotovoltaik Sistemin Performans Analizi. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2021;4:142–148.
MLA Erol, Halil. “Su Soğutmalı Fotovoltaik Sistemin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 2, 2021, pp. 142-8, doi:10.47495/okufbed.823558.
Vancouver Erol H. Su Soğutmalı Fotovoltaik Sistemin Performans Analizi. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2021;4(2):142-8.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.