Research Article
BibTex RIS Cite

Design of a New VOOK Modulator Architecture

Year 2022, Volume: 5 Issue: 3, 1230 - 1243, 12.12.2022
https://doi.org/10.47495/okufbed.1058179

Abstract

References

  • Belli R., Runge C., Portugheis J., Finamore W. A capacity-approaching coding scheme for M-PAM VLC systems with dimming control. Optics Communications 2022: 127891.
  • Chaudhary S., Tang X., Wei X. Experimental demonstration of 62.5 Mbps VLC link for healthcare infrastructures by incorporating limiting amplifier as an amplification scheme. Microelectronics Journal 2021; 108: 104971.
  • Chen C., Deng X., Yang Y., Du P., Yang H., Zhao L. LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning. Applied Sciences 2019: 9(13): 2711.
  • Chen H., Niu W., Zhao Y., Zhang J., Chi N., Li Z. Adaptive deep-learning equalizer based on constellation partitioning scheme with reduced computational complexity in UVLC system. Optics Express 2021; 29(14): 21773-21782.
  • Ge P., Wang J., Ling X., Liang X., Tian Y., Zhao C. Achievable rate analysis for post-and pre-equalization in DCO-OFDM VLC with limited dynamic range. Optics Communications 2020; 476: 126277.
  • Guo H., Zhou X., Liu J., Zhang Y. Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Communications 2021; 33: 100399.
  • Guo JN., Zhang J., Zhang YY., Li L., Zuo Y., Chen, RH.. Multilevel transmission scheme based on parity check codes for VLC with dimming control. Optics Communications 2020; 467: 125733.
  • Jain S., Mitra R., Bhatia V. On BER analysis of nonlinear VLC systems under ambient light and imperfect/outdated CSI. OSA Continuum 2020: 3(11): 3125-3140. Jeong JD., Lim SK., Jang IS., Kim MS., Kang TG., Chong JW. Novel architecture for efficient implementation of dimmable VPPM in VLC lightings. ETRI Journal 2014; 36(6): 905-912.
  • Komine T., Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE transactions on Consumer Electronics 2004; 50(1): 100-107.
  • Lee K., Park H., Modulations for visible light communications with dimming control. IEEE photonics technology letters 2011; 23(16): 1136-1138.
  • Li S., Pandharipande A., Willems FM. Adaptive visible light communication LED receiver. 2017 IEEE sensors, 29 Ekim-1Kasım 2017, 1-3, Glasgow, İskoçya.
  • Lu M., Xiao S., Zhang L., Zheng L., Fang J., Huang T., Hu W. Real-time VLC system integrated with positioning beacon transmission based on 2ASK-CE-OFDM coding. Optics Communications 2019; 452: 252-257.
  • Miramirkhani F., Karbalayghareh M., Mitra R. Least minimum symbol error rate based post-distortion for adaptive mobile VLC transmission with receiver selection. Physical Communication 2021; 47: 101353.
  • Narmanlioglu O., Turan B., Ergen SC., Uysal M. Cooperative MIMO-OFDM based inter-vehicular visible light communication using brake lights, Computer Communications 2018; 120: 138-146.
  • Pham QN., Rachim VP., An J., Chung WY. Ambient light rejection using a novel average voltage tracking in visible light communication system. Applied Sciences 2017; 7(7): 1-9.
  • Raj R., Jaiswal S., Dixit A. Dimming-Based Modulation Schemes for Visible Light Communication: Spectral Analysis and ISI Mitigation. IEEE Open Journal of the Communications Society. 2021; 2: 1777-1798.
  • Shi J., Hong Y., Deng R., He J., Chen LK. Real-time software-reconfigurable hybrid in-house access with OFDM-NOMA. IEEE Photonics Technology Letters 2020; 32(7): 379-382.
  • Shukla NK, Mayet AM, Vats A., Aggarwal M., Raja RK., Verma R., Muqeet, MA. High speed integrated RF–VLC data communication system: Performance constraints and capacity considerations Physical Communication 2022; 50: 101492.
  • vd Zwaag KM., Neves JL., Rocha HR., Segatto ME., Silva JA. Adaptation to the LEDs flicker requirement in visible light communication systems through CE-OFDM signals. Optics Communications 2019; 441: 14-20.
  • Wang JY., Liu C., Wang JB., Wu Y., Lin M., Cheng J. Physical-layer security for indoor visible light communications: Secrecy capacity analysis, IEEE Transactions on Communications 2018; 66(12): 6423-6436.
  • Wang Z., Zhong WD., Yu C., Chen J., Francois CPS., Chen, W. Performance of dimming control scheme in visible light communication system. Optics express 2012; 20(17): 18861-18868.
  • Wu Y., Hu Y., Wan Z., Wang T., Sun, Y., Qianwu Z. Joint security enhancement and PAPR mitigation for OFDM-NOMA VLC systems. Optics Communications 2021: 127719.
  • Xu W., Zhang M., Han D., Ghassemlooy Z., Luo P., Zhang Y. Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping. IEEE Photonics Journal 2018; 10(3): 1-10.
  • Yahia S., Meraihi Y., Ramdane-Cherif A., Gabis AB., Acheli D., Guan,HA Survey of Channel Modeling Techniques for Visible Light Communications, Journal of Network and Computer Applications 2021; 194: 103206.
  • Yoo JH., Kim BW., Jung SY. Modelling and analysis of M-ary variable pulse position modulation for visible light communications. IET Optoelectronics 2015; 9(5): 184-190.
  • Yuan Y., Zhang M., Luo P., Ghassemlooy Z., Lang L., Wang, D., and Han, D. SVM-based detection in visible light communications. Optik 2017; 151: 55-64.
  • Zhang Y., Zhu Y., Zhang Y., Wang C. Real-time optimal tracking angles of photodiodes for MC-VLC in indoor mobile scenarios. Optics Communications 2020; 469: 125744.

Yeni Bir VOOK Modülatör Mimarisinin Tasarımı

Year 2022, Volume: 5 Issue: 3, 1230 - 1243, 12.12.2022
https://doi.org/10.47495/okufbed.1058179

Abstract

Görünür Işık Haberleşme (VLC: Visible Light Communication) Sistemlerinin gelişimi, araştırmacıların optik kablosuz sistemlere yöneliminin artmasını birlikte getirmiştir. Bu nedenle yapılan çalışmada karartma kontrolü sağlayan Değişken Aç-Kapa Anahtarlama (VOOK: Variable On-Off Keying) yöntemi için sayısal devre tabanlı bir mimari önerilmiştir. Özellikle literatürde ilk kez olarak, VOOK sinyalini üretebilmek için bir adaptif verici tasarımı gerçekleştirilmiştir. Geleneksel sistemde kod sözcüklerinin değiştirilmesi durumunda, karartma seviyesi bilgilerinin yer aldığı sabit saklayıcıların tamamının değiştirilmesi gerekmektedir. Ayrıca, bazı bloklar giriş uç değişikliği nedeniyle yeniden tasarlanmalıdır. Ancak önerilen sistemde, karartma seviyesinin değişimi için sisteme sadece karartma seviyesi bilgisi girilerek üretilen VOOK sinyalin karartma seviyesi kontrol edilebilmektedir. Ayrıca VLC-VOOK sistemler için bir alıcı tasarımı gerçekleştirilmiştir. Önerilen tasarımlar FPGA (Field Programmable Gate Arrays: Alanda Programlanabilir Kapı Dizileri) derleyicisi Quartus programında oluşturulmuştur. Çalışmada VOOK yönteminin hata performans analizini gerçekleştirebilmek için bir gürültü üreteci sisteme entegre edilmiş olup, bir Bit Hata Oranı (BER: Bit Error Rate) hesaplayıcısı sisteme uygulanmıştır. Simülasyon sonuçlarında %30, %40 ve %50 karartma seviyeli VOOK sinyaller için bir karşılaştırma gerçekleştirilmiştir. Yapılan donanımsal tasarım, gerçek zamanlı FPGA uygulamaları için simülasyon tabanlı bir model oluşturmaktadır.

References

  • Belli R., Runge C., Portugheis J., Finamore W. A capacity-approaching coding scheme for M-PAM VLC systems with dimming control. Optics Communications 2022: 127891.
  • Chaudhary S., Tang X., Wei X. Experimental demonstration of 62.5 Mbps VLC link for healthcare infrastructures by incorporating limiting amplifier as an amplification scheme. Microelectronics Journal 2021; 108: 104971.
  • Chen C., Deng X., Yang Y., Du P., Yang H., Zhao L. LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning. Applied Sciences 2019: 9(13): 2711.
  • Chen H., Niu W., Zhao Y., Zhang J., Chi N., Li Z. Adaptive deep-learning equalizer based on constellation partitioning scheme with reduced computational complexity in UVLC system. Optics Express 2021; 29(14): 21773-21782.
  • Ge P., Wang J., Ling X., Liang X., Tian Y., Zhao C. Achievable rate analysis for post-and pre-equalization in DCO-OFDM VLC with limited dynamic range. Optics Communications 2020; 476: 126277.
  • Guo H., Zhou X., Liu J., Zhang Y. Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Communications 2021; 33: 100399.
  • Guo JN., Zhang J., Zhang YY., Li L., Zuo Y., Chen, RH.. Multilevel transmission scheme based on parity check codes for VLC with dimming control. Optics Communications 2020; 467: 125733.
  • Jain S., Mitra R., Bhatia V. On BER analysis of nonlinear VLC systems under ambient light and imperfect/outdated CSI. OSA Continuum 2020: 3(11): 3125-3140. Jeong JD., Lim SK., Jang IS., Kim MS., Kang TG., Chong JW. Novel architecture for efficient implementation of dimmable VPPM in VLC lightings. ETRI Journal 2014; 36(6): 905-912.
  • Komine T., Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE transactions on Consumer Electronics 2004; 50(1): 100-107.
  • Lee K., Park H., Modulations for visible light communications with dimming control. IEEE photonics technology letters 2011; 23(16): 1136-1138.
  • Li S., Pandharipande A., Willems FM. Adaptive visible light communication LED receiver. 2017 IEEE sensors, 29 Ekim-1Kasım 2017, 1-3, Glasgow, İskoçya.
  • Lu M., Xiao S., Zhang L., Zheng L., Fang J., Huang T., Hu W. Real-time VLC system integrated with positioning beacon transmission based on 2ASK-CE-OFDM coding. Optics Communications 2019; 452: 252-257.
  • Miramirkhani F., Karbalayghareh M., Mitra R. Least minimum symbol error rate based post-distortion for adaptive mobile VLC transmission with receiver selection. Physical Communication 2021; 47: 101353.
  • Narmanlioglu O., Turan B., Ergen SC., Uysal M. Cooperative MIMO-OFDM based inter-vehicular visible light communication using brake lights, Computer Communications 2018; 120: 138-146.
  • Pham QN., Rachim VP., An J., Chung WY. Ambient light rejection using a novel average voltage tracking in visible light communication system. Applied Sciences 2017; 7(7): 1-9.
  • Raj R., Jaiswal S., Dixit A. Dimming-Based Modulation Schemes for Visible Light Communication: Spectral Analysis and ISI Mitigation. IEEE Open Journal of the Communications Society. 2021; 2: 1777-1798.
  • Shi J., Hong Y., Deng R., He J., Chen LK. Real-time software-reconfigurable hybrid in-house access with OFDM-NOMA. IEEE Photonics Technology Letters 2020; 32(7): 379-382.
  • Shukla NK, Mayet AM, Vats A., Aggarwal M., Raja RK., Verma R., Muqeet, MA. High speed integrated RF–VLC data communication system: Performance constraints and capacity considerations Physical Communication 2022; 50: 101492.
  • vd Zwaag KM., Neves JL., Rocha HR., Segatto ME., Silva JA. Adaptation to the LEDs flicker requirement in visible light communication systems through CE-OFDM signals. Optics Communications 2019; 441: 14-20.
  • Wang JY., Liu C., Wang JB., Wu Y., Lin M., Cheng J. Physical-layer security for indoor visible light communications: Secrecy capacity analysis, IEEE Transactions on Communications 2018; 66(12): 6423-6436.
  • Wang Z., Zhong WD., Yu C., Chen J., Francois CPS., Chen, W. Performance of dimming control scheme in visible light communication system. Optics express 2012; 20(17): 18861-18868.
  • Wu Y., Hu Y., Wan Z., Wang T., Sun, Y., Qianwu Z. Joint security enhancement and PAPR mitigation for OFDM-NOMA VLC systems. Optics Communications 2021: 127719.
  • Xu W., Zhang M., Han D., Ghassemlooy Z., Luo P., Zhang Y. Real-time 262-Mb/s visible light communication with digital predistortion waveform shaping. IEEE Photonics Journal 2018; 10(3): 1-10.
  • Yahia S., Meraihi Y., Ramdane-Cherif A., Gabis AB., Acheli D., Guan,HA Survey of Channel Modeling Techniques for Visible Light Communications, Journal of Network and Computer Applications 2021; 194: 103206.
  • Yoo JH., Kim BW., Jung SY. Modelling and analysis of M-ary variable pulse position modulation for visible light communications. IET Optoelectronics 2015; 9(5): 184-190.
  • Yuan Y., Zhang M., Luo P., Ghassemlooy Z., Lang L., Wang, D., and Han, D. SVM-based detection in visible light communications. Optik 2017; 151: 55-64.
  • Zhang Y., Zhu Y., Zhang Y., Wang C. Real-time optimal tracking angles of photodiodes for MC-VLC in indoor mobile scenarios. Optics Communications 2020; 469: 125744.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section RESEARCH ARTICLES
Authors

Mehmet Sonmez

Publication Date December 12, 2022
Submission Date January 15, 2022
Acceptance Date March 28, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Sonmez, M. (2022). Yeni Bir VOOK Modülatör Mimarisinin Tasarımı. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1230-1243. https://doi.org/10.47495/okufbed.1058179
AMA Sonmez M. Yeni Bir VOOK Modülatör Mimarisinin Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1230-1243. doi:10.47495/okufbed.1058179
Chicago Sonmez, Mehmet. “Yeni Bir VOOK Modülatör Mimarisinin Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1230-43. https://doi.org/10.47495/okufbed.1058179.
EndNote Sonmez M (December 1, 2022) Yeni Bir VOOK Modülatör Mimarisinin Tasarımı. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1230–1243.
IEEE M. Sonmez, “Yeni Bir VOOK Modülatör Mimarisinin Tasarımı”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1230–1243, 2022, doi: 10.47495/okufbed.1058179.
ISNAD Sonmez, Mehmet. “Yeni Bir VOOK Modülatör Mimarisinin Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1230-1243. https://doi.org/10.47495/okufbed.1058179.
JAMA Sonmez M. Yeni Bir VOOK Modülatör Mimarisinin Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1230–1243.
MLA Sonmez, Mehmet. “Yeni Bir VOOK Modülatör Mimarisinin Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1230-43, doi:10.47495/okufbed.1058179.
Vancouver Sonmez M. Yeni Bir VOOK Modülatör Mimarisinin Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1230-43.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.