Research Article
BibTex RIS Cite

Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması

Year 2022, Volume: 5 Issue: 3, 1527 - 1549, 12.12.2022
https://doi.org/10.47495/okufbed.1075375

Abstract

Bu çalışmada, Paladyum izotoplarının (102,104,106,108,110Pd) (n,2n), (n,p) ve (n,) reaksiyon tesir kesitleri Empire-3.2.3 (Malta) istatistiksel model kodu kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar nötron enerjilerinde hesaplanmıştır. Hesaplamalar, dört farklı nükleer seviye yoğunluğu modeli (Genelleştirilmiş Süper Akışkan modeli, Gelişmiş Genelleştirilmiş Süper Akışkan modeli, Gilbert-Cameron modeli ve Hartree-Fock-Bogoliubov mikroskobik modeli) kullanılarak yapılmıştır. Hesaplardan elde edilen sonuçlar, EXFOR kütüphanesinde bulunan deneysel verilerle ve ENDF kütüphanesinden alınan ENDF/B-VIII.0 (USA,2018), TENDL-2019 (TALYS, 2019) ve JENDL-5 (Japan,2021) değerlendirilmiş verilerle karşılaştırılmıştır. 14.5 MeV civarında deneysel ve değerlendirilmiş verilerle karşılaştırıldığında, sonuçlar genel olarak tutarlı bir uyum göstermektedir.

References

  • Augustyniak W., Herman M., Marcinkowski A., Zwieglinski B., Cross sections for the (n,2n) reaction on Pd-102, Pd-110, Cd-112 and Os-192, Nuclear Physics A, 1977; 285 (1); 145-155.
  • Ball P., The elements : a very short introduction. Oxford: Oxford University Press, 2004.
  • Bethe HA., Nuclear dynamics, theoretical, reviews of modern physics, Nuclear Physics B., 1937; 9 (2): 69-244.
  • Bormann M., Bissem HH., Magiera E., Warnemunde R., Total cross sections and isomeric cross section ratios for (n,2n) reactions in the energy region 12 - 18 MeV, Nuclear Physics A, 1970; 157: 481-96.
  • Broeders CHM., Konobeyev AY., Korovin YA., Lunev VP., Blann M., Report FZKA-7183, ALICE/ASH Manual, FZK 7183, 2006. (http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf).
  • Capote R., Osorio V., Lopez R., Herrera E., Piris M., Higher institute of nuclear science and technology, cuba, Translated by the IAEA on the March, (PCROSS program code),1991.
  • Capote R., Herman M., Oblozinsky P., Young PG., Goriely S., Belgya T., Ignatyuk AV., Koning AJ., Hilaire S., Plujko V.A., Avrigeanu M., Bersillon O., Chadwick MB., Fukahori T., Zhigang Ge, Yinlu Han, Kailas S., Kopecky J., Maslov VM., Reffo G., Sin M., Soukhovitskii E.Sh. ve Talou P., Reference Input Parameter Library (RIPL-3), Nuclear Data Sheets, 2009; 110 (12): 3107-3214.
  • Dilg, W., Schantl W., Vonach H., Uhl M., Level density parameters for the backshifted fermi gas model in the mass range 40<A<250. Nuclear Physics A, 1973; 217 (2): 269-298.
  • Ditrói F., Tárkányi F., Takács S., Mahunka I., Csikai J., Hermanne A., Uddin MS., Hagiwara M., Baba M., Ido T., Shubin Yu., Dityuk AI., Measurement of activation cross sections of the proton induced nuclear reactions on palladium, Journal of Radioanalytical and Nuclear Chemistry, 2007; 272 (2): 231–235.
  • Filatenkov AA., Neutron activation cross sections measured at KRI in neutron energy region 13.4 - 14.9 MeV, INDC(CCP)-0460 Rev Distr. G+J, INDC International Nuclear Data Committee, St. Petersburg, Russia, 2016.
  • Gilbert A., Cameron, AGW., A composite nuclear level density formula with shell correction, Canadian Journal of Physics, 1965; 43 (8): 1446-1496.
  • Hauser W., Feshbach H., The ınelastic scattering of neutrons, Physical Review C, 1952; 87 (2): 366-373.
  • Herman M., Capote R., Carlson BV., Oblozinsky P., Sin M., Trkov A., Wienke H., Zerkin V., EMPIRE: Nuclear reaction model code system for data evaluation, Nuclear Data Sheets, 2007; 108 (12): 2655-2715.
  • Herman M., Capote R., Sin M., Trkov A., Carlson B., Brown D., Nobre G., Oblozinsky P., Mattoon C., Wienke H., Hoblit S., Cho YS., Nobre GPA., Plujko V. , Zerkin V., EMPIRE-3.2 Malta (rev.1) modular system for nuclear reaction calculations and nuclear data evaluation, User's Manual, 2015.(https://www-nds.iaea.org/empire/index.html )
  • Ignatyuk AV., Smirenkin GN., Tishin AS., Phenomenological description of energy dependence of the level density parameter, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1975; 21 (3): 485-490.
  • Ignatyuk AV., Istekov KK., Smirenkin GN, The role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1979; 29 (4): 875-883.
  • Iwamura Y., Sakano M., Itho T., Elemental analysis of Pd complexes: effects of D2 gas permeation. Japanese Journal of Applied Physics, 2002; 41 (1, 7A): 4642–4650.
  • Kaplan A., Tel E., Aydin A., The Equilibrium and preequilibrium neutron-emission spectra of some, structural fusion materials for (n, xn) reactions up to 16 MeV Energy, Physics of Atomic Nuclei, 2009; 72, (6): 903–910.
  • Kasugai Y., Yamamoto H., Kawade K., Iida T., Measurements of (n,p) cross-sections for short-lived products by 13.4-14.9 MeV neutrons, Annals of Nuclear Energy, 1998; 25 (1–3): 23-45.
  • Kong X., Hu S., Wang R., Yang J., Pu Z., The cross section measurements for 13.5 -14.7 MeV neutron induced reactions on palladium isotopes, Journal of Lanzhou University, Natural Sciences, 1999; 35 (2), 83-88.
  • Konno C., Ikeda Y., Oishi K., Kawade K., Yamamoto H., Maekawa H.,, Activation cross section measurements at neutron energy from 13.3 to 14.9 MeV Using the FNS facility, JAERI 1329, Tokai-mura, 1993.
  • Koning AJ., Delaroche JP., Local and global nucleon optical models from 1 keV to 200 MeV, Nuclear Physics A, 2003; 713 (3-4): 231–310.
  • Koning AJ., Hilaire S., Goriely S., Global and local level density models, Nuclear Physics A, 2008; 810 (1-4): 13-76.
  • Koning A., Hilaire S., Goriely S., TALYS-1.6, A Nuclear Reaction Program, User Manual, 1st ed., Westerduinweg 3, P.O. Box 25, NL-1755 ZG, Petten, The Netherlands, 2013. (http://www.talys.eu/download-talys/.htm).
  • Lan CL., Fang KH., Xu XS., Wang Q., Kong XZ., Liu R., Jiang L., Activation cross-section measurements for producing short-lived nuclei with 14MeV neutrons-Ge, Pd, Yb, Radiation Physics and Chemistry, 2008; 77 (7) : 854-858.
  • Levkovskii VN., Artemev OI., Cross sections of reactions (n, p) and (n, α) at the neutron energy of 14.8 MeV, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1971; 13 (5) : 529.
  • Lu WD., Kumar NR., Fink RW., Activation cross sections for (n,p), ((n,np)+(n,pn)+(n,d)), and (n,alpha) reactions in the region of Z=40 to 58 at 14.4 MeV, Physical Review C1, 1970; 1: 358.
  • Meaze AKMMH., Kim GN., Determination of niobium and palladium resonance cross sections by time-of-flight transmission experiment, Indian Journal of Physics, 2011; 85 (2): 329-338.
  • Newman RJ., Smith FJ., Platinum metals from nuclear fission. an evaluation of their possible use by industry, Platinum Metals Rev., 1970; 14: 88-92.
  • Oh Y., Kang H., Cho MH., Ko IS., Namkung W., Wang T., Rahman MS., Lee M., Kim G., Measurement of the neutron total cross sections of natural palladium by using pulsed neutrons at pohang neutron facility, Journal of Nuclear Science And Technology, Supplement, 2008; 5: 590-593.
  • Paul EB., Clarke RL., Cross section measurements of reactions induced by neutrons of the 14.5 MeV energy, Canadian Journal of Physics, 1953; 31 (2): 267-277.
  • Pasha I., Rudraswamy B., Suryanarayana SV., Naik H., Ram SP., Danu LS., Patel T., Bishnoi S., Karantha MP., Measurement of neutron induced reaction cross sections of palladium isotopes at the neutron energy of 14.54 +/- 0.24 MeV with covariance analysis, Journal of Radioanalytical and Nuclear Chemistry, 2020; 325 (2): 175-182.
  • Prasad R., Sarkar DC., Measured (n,p) reaction cross-sections and their predicted values at 14.8 MeV, II Nuovo Cimrntlo A, 1971; 3 (4), 467-478.
  • Sahan M., Tel E., A. Aydın A., Yegingil İ., Investigation of some stellar iron group fusion materials for (n, p) reactions, Journal of Fusion Enery, 2012; 31: 52-64.
  • Sahan M., Tel E., Sahan H., Gevher U., Kara A., Cross section calculations of (n,2n) and (n,p) nuclear reactions, on Germanium isotopes at 14–15 MeV, Journal of Fusion Enery, 2016; 35: 730-742.
  • Sahan H., Sahan M., E. Tel, Cross-section calculation of (n, p) and (n,2n) reactions for high temperature reactors construction materials tungsten and rhenium, Physics of Atomic Nuclei, 2021, 84 (5): 724-738.
  • Takahashi S., Ikeda M., Iwata K., Tanaka S., Akayama R. , Takahashi T., Estimation of the radiation dose of 107Pd in palladium products and preliminary proposal of appropriate clearance level, Journal of Nuclear Science and Technology, 2018; 55 (12): 1490-1495.
  • Tel E., Bölükdemir MH., ¸ Okuducu S., Aydın A., Kaplan A., Investigation of neutron skin effect, with density dependence by using a new calculation method for initial exciton numbers on pre-equilibrium reactions, Physica Scripta, 2009; 80, 065201 (7 sayfa).
  • Uwamino Y., Sugita H., Kondo Y., Nakamura T., Measurement of neutron activation cross sections of energy up to 40 MeV using semi-monoenergetic p-Be neutrons, Nuclear Science and Engineering, 1992; 111 (4): 391–403.
  • Uwamino Y., Sugita H., Kondo Y., Nakamura T., Measurement of neutron activation cross sections for energies up to 40 MeV for natural samples of Si, Cu and Zn, Journal of Nuclear Science and Technology, 1994; 3 (1): 1-11.
  • Wang T., Kim G., Oh YD., Cho MH., Ko IS., Namkung W. Neutron total cross sections and resonance parameters of palladium. Nuclear Science and Engineering, 2016; 183:286–297.
  • Weigel H., Michel R., Herr W., Measurement of 14MeV cross sections for (n,p), (n,alpha),(n,2n) and (n,np+pn+d) reactions in the elements Sc,Ni,Ge,Pd,Cd,Sm,Dy,Gd and Yb by taking into account the "effective" n-energy spectra (in German), Radiochim. Acta, 1975; 22: 11.
  • White RL., Gray TJ., Neutron cross sections in Pd isotopes over an energy range of 15.1 to 16.3 MeV, Bulletin of the American Physical Society Ser.II, 1972; 17, 687 (FD10).
  • Yiğit M., Kara A., Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,6668Zn targets, Nuclear Engineering and Technology, 2017: 49, 996-1005.
  • Yiğit M., A review of (n,p) and (n,α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas, Applied Radiation and Isotopes, 2018; 140: 355–362.

The (n,2n), (n,p) and (n,a) cross section calculations of the palladium isotopes using different level density models from the reaction threshold to 20 MeV

Year 2022, Volume: 5 Issue: 3, 1527 - 1549, 12.12.2022
https://doi.org/10.47495/okufbed.1075375

Abstract

In this study, reaction cross sections of Palladium isotopes (102,104,106,108,110Pd) (n,2n), (n,p) and (n,) were calculated for neutron energies from reaction threshold to 20 MeV by using Empire-3.2.3 (Malta) statistical model code. The calculations are performed by using four different nuclear level density models (Generalized Superfluid Model, Enhanced Generalized Superfluid Model, Gilbert-Cameron Model, and Hartree-Fock-Bogoliubov Microscopic Model). The obtained results from calculations are compared with the existing experimental data taken from EXFOR library and the evaluated nuclear data library of ENDF/B-VIII.0 (USA, 2018), TENDL-2019 (TALYS, 2019) and JENDL-5 (Japan, 2021) data taken from ENDF. Comparing with experimental and evaluated data around 14.5 MeV, results show generally consistent agreement.

References

  • Augustyniak W., Herman M., Marcinkowski A., Zwieglinski B., Cross sections for the (n,2n) reaction on Pd-102, Pd-110, Cd-112 and Os-192, Nuclear Physics A, 1977; 285 (1); 145-155.
  • Ball P., The elements : a very short introduction. Oxford: Oxford University Press, 2004.
  • Bethe HA., Nuclear dynamics, theoretical, reviews of modern physics, Nuclear Physics B., 1937; 9 (2): 69-244.
  • Bormann M., Bissem HH., Magiera E., Warnemunde R., Total cross sections and isomeric cross section ratios for (n,2n) reactions in the energy region 12 - 18 MeV, Nuclear Physics A, 1970; 157: 481-96.
  • Broeders CHM., Konobeyev AY., Korovin YA., Lunev VP., Blann M., Report FZKA-7183, ALICE/ASH Manual, FZK 7183, 2006. (http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf).
  • Capote R., Osorio V., Lopez R., Herrera E., Piris M., Higher institute of nuclear science and technology, cuba, Translated by the IAEA on the March, (PCROSS program code),1991.
  • Capote R., Herman M., Oblozinsky P., Young PG., Goriely S., Belgya T., Ignatyuk AV., Koning AJ., Hilaire S., Plujko V.A., Avrigeanu M., Bersillon O., Chadwick MB., Fukahori T., Zhigang Ge, Yinlu Han, Kailas S., Kopecky J., Maslov VM., Reffo G., Sin M., Soukhovitskii E.Sh. ve Talou P., Reference Input Parameter Library (RIPL-3), Nuclear Data Sheets, 2009; 110 (12): 3107-3214.
  • Dilg, W., Schantl W., Vonach H., Uhl M., Level density parameters for the backshifted fermi gas model in the mass range 40<A<250. Nuclear Physics A, 1973; 217 (2): 269-298.
  • Ditrói F., Tárkányi F., Takács S., Mahunka I., Csikai J., Hermanne A., Uddin MS., Hagiwara M., Baba M., Ido T., Shubin Yu., Dityuk AI., Measurement of activation cross sections of the proton induced nuclear reactions on palladium, Journal of Radioanalytical and Nuclear Chemistry, 2007; 272 (2): 231–235.
  • Filatenkov AA., Neutron activation cross sections measured at KRI in neutron energy region 13.4 - 14.9 MeV, INDC(CCP)-0460 Rev Distr. G+J, INDC International Nuclear Data Committee, St. Petersburg, Russia, 2016.
  • Gilbert A., Cameron, AGW., A composite nuclear level density formula with shell correction, Canadian Journal of Physics, 1965; 43 (8): 1446-1496.
  • Hauser W., Feshbach H., The ınelastic scattering of neutrons, Physical Review C, 1952; 87 (2): 366-373.
  • Herman M., Capote R., Carlson BV., Oblozinsky P., Sin M., Trkov A., Wienke H., Zerkin V., EMPIRE: Nuclear reaction model code system for data evaluation, Nuclear Data Sheets, 2007; 108 (12): 2655-2715.
  • Herman M., Capote R., Sin M., Trkov A., Carlson B., Brown D., Nobre G., Oblozinsky P., Mattoon C., Wienke H., Hoblit S., Cho YS., Nobre GPA., Plujko V. , Zerkin V., EMPIRE-3.2 Malta (rev.1) modular system for nuclear reaction calculations and nuclear data evaluation, User's Manual, 2015.(https://www-nds.iaea.org/empire/index.html )
  • Ignatyuk AV., Smirenkin GN., Tishin AS., Phenomenological description of energy dependence of the level density parameter, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1975; 21 (3): 485-490.
  • Ignatyuk AV., Istekov KK., Smirenkin GN, The role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1979; 29 (4): 875-883.
  • Iwamura Y., Sakano M., Itho T., Elemental analysis of Pd complexes: effects of D2 gas permeation. Japanese Journal of Applied Physics, 2002; 41 (1, 7A): 4642–4650.
  • Kaplan A., Tel E., Aydin A., The Equilibrium and preequilibrium neutron-emission spectra of some, structural fusion materials for (n, xn) reactions up to 16 MeV Energy, Physics of Atomic Nuclei, 2009; 72, (6): 903–910.
  • Kasugai Y., Yamamoto H., Kawade K., Iida T., Measurements of (n,p) cross-sections for short-lived products by 13.4-14.9 MeV neutrons, Annals of Nuclear Energy, 1998; 25 (1–3): 23-45.
  • Kong X., Hu S., Wang R., Yang J., Pu Z., The cross section measurements for 13.5 -14.7 MeV neutron induced reactions on palladium isotopes, Journal of Lanzhou University, Natural Sciences, 1999; 35 (2), 83-88.
  • Konno C., Ikeda Y., Oishi K., Kawade K., Yamamoto H., Maekawa H.,, Activation cross section measurements at neutron energy from 13.3 to 14.9 MeV Using the FNS facility, JAERI 1329, Tokai-mura, 1993.
  • Koning AJ., Delaroche JP., Local and global nucleon optical models from 1 keV to 200 MeV, Nuclear Physics A, 2003; 713 (3-4): 231–310.
  • Koning AJ., Hilaire S., Goriely S., Global and local level density models, Nuclear Physics A, 2008; 810 (1-4): 13-76.
  • Koning A., Hilaire S., Goriely S., TALYS-1.6, A Nuclear Reaction Program, User Manual, 1st ed., Westerduinweg 3, P.O. Box 25, NL-1755 ZG, Petten, The Netherlands, 2013. (http://www.talys.eu/download-talys/.htm).
  • Lan CL., Fang KH., Xu XS., Wang Q., Kong XZ., Liu R., Jiang L., Activation cross-section measurements for producing short-lived nuclei with 14MeV neutrons-Ge, Pd, Yb, Radiation Physics and Chemistry, 2008; 77 (7) : 854-858.
  • Levkovskii VN., Artemev OI., Cross sections of reactions (n, p) and (n, α) at the neutron energy of 14.8 MeV, Sov. J. Nucl. Phys. (Yadernaja Fizika), 1971; 13 (5) : 529.
  • Lu WD., Kumar NR., Fink RW., Activation cross sections for (n,p), ((n,np)+(n,pn)+(n,d)), and (n,alpha) reactions in the region of Z=40 to 58 at 14.4 MeV, Physical Review C1, 1970; 1: 358.
  • Meaze AKMMH., Kim GN., Determination of niobium and palladium resonance cross sections by time-of-flight transmission experiment, Indian Journal of Physics, 2011; 85 (2): 329-338.
  • Newman RJ., Smith FJ., Platinum metals from nuclear fission. an evaluation of their possible use by industry, Platinum Metals Rev., 1970; 14: 88-92.
  • Oh Y., Kang H., Cho MH., Ko IS., Namkung W., Wang T., Rahman MS., Lee M., Kim G., Measurement of the neutron total cross sections of natural palladium by using pulsed neutrons at pohang neutron facility, Journal of Nuclear Science And Technology, Supplement, 2008; 5: 590-593.
  • Paul EB., Clarke RL., Cross section measurements of reactions induced by neutrons of the 14.5 MeV energy, Canadian Journal of Physics, 1953; 31 (2): 267-277.
  • Pasha I., Rudraswamy B., Suryanarayana SV., Naik H., Ram SP., Danu LS., Patel T., Bishnoi S., Karantha MP., Measurement of neutron induced reaction cross sections of palladium isotopes at the neutron energy of 14.54 +/- 0.24 MeV with covariance analysis, Journal of Radioanalytical and Nuclear Chemistry, 2020; 325 (2): 175-182.
  • Prasad R., Sarkar DC., Measured (n,p) reaction cross-sections and their predicted values at 14.8 MeV, II Nuovo Cimrntlo A, 1971; 3 (4), 467-478.
  • Sahan M., Tel E., A. Aydın A., Yegingil İ., Investigation of some stellar iron group fusion materials for (n, p) reactions, Journal of Fusion Enery, 2012; 31: 52-64.
  • Sahan M., Tel E., Sahan H., Gevher U., Kara A., Cross section calculations of (n,2n) and (n,p) nuclear reactions, on Germanium isotopes at 14–15 MeV, Journal of Fusion Enery, 2016; 35: 730-742.
  • Sahan H., Sahan M., E. Tel, Cross-section calculation of (n, p) and (n,2n) reactions for high temperature reactors construction materials tungsten and rhenium, Physics of Atomic Nuclei, 2021, 84 (5): 724-738.
  • Takahashi S., Ikeda M., Iwata K., Tanaka S., Akayama R. , Takahashi T., Estimation of the radiation dose of 107Pd in palladium products and preliminary proposal of appropriate clearance level, Journal of Nuclear Science and Technology, 2018; 55 (12): 1490-1495.
  • Tel E., Bölükdemir MH., ¸ Okuducu S., Aydın A., Kaplan A., Investigation of neutron skin effect, with density dependence by using a new calculation method for initial exciton numbers on pre-equilibrium reactions, Physica Scripta, 2009; 80, 065201 (7 sayfa).
  • Uwamino Y., Sugita H., Kondo Y., Nakamura T., Measurement of neutron activation cross sections of energy up to 40 MeV using semi-monoenergetic p-Be neutrons, Nuclear Science and Engineering, 1992; 111 (4): 391–403.
  • Uwamino Y., Sugita H., Kondo Y., Nakamura T., Measurement of neutron activation cross sections for energies up to 40 MeV for natural samples of Si, Cu and Zn, Journal of Nuclear Science and Technology, 1994; 3 (1): 1-11.
  • Wang T., Kim G., Oh YD., Cho MH., Ko IS., Namkung W. Neutron total cross sections and resonance parameters of palladium. Nuclear Science and Engineering, 2016; 183:286–297.
  • Weigel H., Michel R., Herr W., Measurement of 14MeV cross sections for (n,p), (n,alpha),(n,2n) and (n,np+pn+d) reactions in the elements Sc,Ni,Ge,Pd,Cd,Sm,Dy,Gd and Yb by taking into account the "effective" n-energy spectra (in German), Radiochim. Acta, 1975; 22: 11.
  • White RL., Gray TJ., Neutron cross sections in Pd isotopes over an energy range of 15.1 to 16.3 MeV, Bulletin of the American Physical Society Ser.II, 1972; 17, 687 (FD10).
  • Yiğit M., Kara A., Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,6668Zn targets, Nuclear Engineering and Technology, 2017: 49, 996-1005.
  • Yiğit M., A review of (n,p) and (n,α) nuclear cross sections on palladium nuclei using different level density models and empirical formulas, Applied Radiation and Isotopes, 2018; 140: 355–362.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section RESEARCH ARTICLES
Authors

Halide Şahan 0000-0002-6223-6807

Muhittin Şahan 0000-0001-6716-8463

Eyyup Tel 0000-0002-5422-3301

Publication Date December 12, 2022
Submission Date February 18, 2022
Acceptance Date June 2, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Şahan, H., Şahan, M., & Tel, E. (2022). Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1527-1549. https://doi.org/10.47495/okufbed.1075375
AMA Şahan H, Şahan M, Tel E. Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1527-1549. doi:10.47495/okufbed.1075375
Chicago Şahan, Halide, Muhittin Şahan, and Eyyup Tel. “Farklı Seviye yoğunluk Modelleri kullanılarak Reaksiyon eşik değerinden 20 MeV’e Kadar Paladyum izotoplarının (n,2n), (n,p) Ve (n,) Tesir Kesitlerinin Hesaplanması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1527-49. https://doi.org/10.47495/okufbed.1075375.
EndNote Şahan H, Şahan M, Tel E (December 1, 2022) Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1527–1549.
IEEE H. Şahan, M. Şahan, and E. Tel, “Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1527–1549, 2022, doi: 10.47495/okufbed.1075375.
ISNAD Şahan, Halide et al. “Farklı Seviye yoğunluk Modelleri kullanılarak Reaksiyon eşik değerinden 20 MeV’e Kadar Paladyum izotoplarının (n,2n), (n,p) Ve (n,) Tesir Kesitlerinin Hesaplanması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1527-1549. https://doi.org/10.47495/okufbed.1075375.
JAMA Şahan H, Şahan M, Tel E. Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1527–1549.
MLA Şahan, Halide et al. “Farklı Seviye yoğunluk Modelleri kullanılarak Reaksiyon eşik değerinden 20 MeV’e Kadar Paladyum izotoplarının (n,2n), (n,p) Ve (n,) Tesir Kesitlerinin Hesaplanması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1527-49, doi:10.47495/okufbed.1075375.
Vancouver Şahan H, Şahan M, Tel E. Farklı seviye yoğunluk modelleri kullanılarak reaksiyon eşik değerinden 20 MeV’e kadar Paladyum izotoplarının (n,2n), (n,p) ve (n,) tesir kesitlerinin hesaplanması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1527-49.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.