Research Article
BibTex RIS Cite

Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması

Year 2022, Volume: 5 Issue: 3, 1656 - 1671, 12.12.2022
https://doi.org/10.47495/okufbed.1110625

Abstract

Metallerin üstün mukavemet ve yüksek kırılma tokluklarına sahip olmaları nedeni ile biyomalzeme olarak kullanılabilirlikleri yaygın olarak araştırılmaktadır. Ortam şartlarında Mg3Bi bileşiğinin, yapısal ve elastik özellikleri ile anizotropisi ilk-prensipler yöntemi ile araştırıldı. Araştırma sonucunda elde edilen bulguların ulaşılabilen literatür verileri ile uyumlu olduğu görüldü. Hesaplanan elastik sabitler mekanik kararlılık kriterlerini sağladığından, çalışılan bileşiğin mekanik olarak kararlı olduğu söylenebilir. Malzeme mekanik olarak kararlı olduğu için elastik modül, Vicker sertliği, Debye sıcaklığı, erime sıcaklığı, minimum termal iletkenlik değerleri tahmin edildi. Hesaplanan Vicker sertliğinin 1 GPa civarında olmasından dolayı, Mg3Bi bileşiği yumuşak malzeme sınıfında kategorize edilebilir. Mühendislik ve malzeme bilimi açısından önem arz eden anizotropi, detaylı olarak araştırıldı.

References

  • Avedesian, M. M., Baker, H., & ASM International. Handbook Committee. (1999). Magnesium and magnesium alloys. 314.
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63(13), 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (1st editio; F. W. Vahldiek & S. A. Mersol, ed.). https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Çanlı, M., İlhan, E., & Arıkan, N. (2021). First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler alloys X2ScGa (X = Ir and Rh). Materials Today Communications, 26, 101855. https://doi.org/10.1016/j.mtcomm.2020.101855
  • Cassell, C., Benedict, M., sports, B. S.-M. and science in, & 1996, undefined. (y.y.). Bone mineral density in elite 7-to 9-yr-old female gymnasts and swimmers. europepmc.org. Tarihinde adresinden erişildi https://europepmc.org/article/med/8897380
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • Degarmo, E. P. (1979). Materials & Processes in Manufacturing (5th Edition). New York: Macmillan . Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fehling, P. C., Alekel, L., Clasey, J., Rector, A., & Stillman, R. J. (1995). A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone, 17(3), 205–210. https://doi.org/10.1016/8756-3282(95)00171-9
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Franchi, M. ., Pasquale, V. D., Ruggeri, A. ., & Strocchi, R. . (1991). Tricalcium phosphate endosseous implants in dentistry: ultrastructural findings. 34(3–4), 123–131.
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39). https://doi.org/10.1088/0953-8984/21/39/395502
  • Gutiérrez Moreno, J. J., Papageorgiou, D. G., Evangelakis, G. A., & Lekka, C. E. (2018). An ab initio study of the structural and mechanical alterations of Ti-Nb alloys. Journal of Applied Physics, 124(24), 245102. https://doi.org/10.1063/1.5025926
  • Haines, J., Léger, J., & Bocquillon, G. (2001). Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31(1), 1–23. https://doi.org/10.1146/annurev.matsci.31.1.1
  • Hartwig, A. (2001). Role of magnesium in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 113–121. https://doi.org/10.1016/S0027-5107(01)00074-4
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. https://doi.org/10.1063/1.4812323
  • Kuwahara, H., Al-Abdullat, Y., Mazaki, N., Tsutsumi, S., & Aizawa, T. (2001). Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank’s Solution. MATERIALS TRANSACTIONS, 42(7), 1317–1321. https://doi.org/10.2320/matertrans.42.1317
  • Li, X., Guo, C., Liu, X., Liu, L., Bai, J., Xue, F., … Chu, C. (2014). Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires. Progress in Natural Science: Materials International, 24(5), 472–478. https://doi.org/10.1016/j.pnsc.2014.08.003
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  • Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616. https://doi.org/10.1103/PhysRevB.40.3616
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. https://doi.org/10.1103/PHYSREVB.13.5188
  • Nagels, J., Stokdijk, M., & Rozing, P. M. (2003). Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 12(1), 35–39. https://doi.org/10.1067/mse.2003.22
  • Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1–2), 231–236. https://doi.org/10.1016/S0921-5093(97)00806-X
  • Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3), 477–486. https://doi.org/10.1007/S11661-002-0109-2
  • Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. New York: Oxford University Press.
  • Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17(7–8), 679–680. https://doi.org/10.1016/S0899-9007(01)00551-2
  • Ozaki, T., Matsumoto, H., Watanabe, S., & Hanada, S. (2004). Beta Ti Alloys with Low Young’s Modulus. MATERIALS TRANSACTIONS, 45(8), 2776–2779. https://doi.org/10.2320/matertrans.45.2776
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, ed.). Kyrenia-TRNC: 4 th International Congress on Multidisciplinary Studies.
  • Özer, T. (2021). Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method. Computational Condensed Matter, 28, e00568. https://doi.org/10.1016/J.COCOM.2021.E00568
  • Paufler, P. (1990). L. L. Gibson, M. F. Ashby. Cellular solids. Structure & properties. Crystal Research and Technology, 25(9), 1038–1038. https://doi.org/10.1002/crat.2170250912
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Petit, A. T., & Dulong, P. L. (1819). Recherches sur quelques points importans de la théorie de la chaleur. Içinde Annales de chimie et de physique (ss. 395–413). Paris.
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM, 65(11), 1501–1509. https://doi.org/10.1007/s11837-013-0755-4
  • Saris, N.-E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium. Clinica Chimica Acta, 294(1–2), 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2
  • Serre, C. M., Papillard, M., Chavassieux, P., Voegel, J. C., & Boivin, G. (1998). Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42(4), 626–633. https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Sumner, D. R., Turner, T. M., Igloria, R., Urban, R. M., & Galante, J. O. (1998). Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 31(10), 909–917. https://doi.org/10.1016/S0021-9290(98)00096-7
  • Šupová, M. (2015). Substituted hydroxyapatites for biomedical applications: A review. Ceramics International, 41(8), 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316
  • Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Velikokhatnyi, O. I., & Kumta, P. N. (2018). First principles study of the elastic properties of magnesium and iron based bio-resorbable alloys. Materials Science and Engineering: B, 230, 20–23. https://doi.org/10.1016/j.mseb.2017.12.024
  • Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24(1–3), 27–37. https://doi.org/10.1016/S0098-2997(02)00089-4
  • Wen, C. ., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., & Asahina, T. (2001). Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45(10), 1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0
  • Wiesmann, H.-P., Tkotz, T., Joos, U., Zierold, K., Stratmann, U., Szuwart, T., … Höhling, H. J. (1997). Magnesium in Newly Formed Dentin Mineral of Rat Incisor. Journal of Bone and Mineral Research, 12(3), 380–383. https://doi.org/10.1359/jbmr.1997.12.3.380
  • Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), 3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049
  • Wolf, F. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24(1–3), 3–9. https://doi.org/10.1016/S0098-2997(02)00087-0
  • Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., & Uchida, T. (2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials, 24(27), 4913–4920. https://doi.org/10.1016/S0142-9612(03)00414-9
  • Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Uchida, T., Kubo, T., … Matsuura, N. (2002). Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. Journal of Biomedical Materials Research, 62(1), 99–105. https://doi.org/10.1002/jbm.10220
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022

Elastic Properties of Magnesium Based Mg3Bi Bioresorbable Alloys: Ab Initio Study

Year 2022, Volume: 5 Issue: 3, 1656 - 1671, 12.12.2022
https://doi.org/10.47495/okufbed.1110625

Abstract

Because metals have superior strength and high fracture toughness, their usability as biomaterials is widely investigated. Structural and elastic properties and anisotropy of Mg3Bi compound under ambient conditions were investigated by the first-principles method. It was seen that the findings obtained as a result of the research were compatible with the available literature data. Since the calculated elastic constants meet the mechanical stability criteria, it can be said that the studied compound is mechanically stable. Since the material is mechanically stable, elastic modulus, Vicker hardness, Debye temperature, melting temperature, and minimum thermal conductivity values were estimated. Due to the calculated Vicker hardness of around 1 GPa, the Mg3Bi compound can be categorized in the soft material class. Anisotropy, which is important in terms of engineering and materials science, has been investigated in detail.

References

  • Avedesian, M. M., Baker, H., & ASM International. Handbook Committee. (1999). Magnesium and magnesium alloys. 314.
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63(13), 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (1st editio; F. W. Vahldiek & S. A. Mersol, ed.). https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Çanlı, M., İlhan, E., & Arıkan, N. (2021). First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler alloys X2ScGa (X = Ir and Rh). Materials Today Communications, 26, 101855. https://doi.org/10.1016/j.mtcomm.2020.101855
  • Cassell, C., Benedict, M., sports, B. S.-M. and science in, & 1996, undefined. (y.y.). Bone mineral density in elite 7-to 9-yr-old female gymnasts and swimmers. europepmc.org. Tarihinde adresinden erişildi https://europepmc.org/article/med/8897380
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • Degarmo, E. P. (1979). Materials & Processes in Manufacturing (5th Edition). New York: Macmillan . Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fehling, P. C., Alekel, L., Clasey, J., Rector, A., & Stillman, R. J. (1995). A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone, 17(3), 205–210. https://doi.org/10.1016/8756-3282(95)00171-9
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Franchi, M. ., Pasquale, V. D., Ruggeri, A. ., & Strocchi, R. . (1991). Tricalcium phosphate endosseous implants in dentistry: ultrastructural findings. 34(3–4), 123–131.
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39). https://doi.org/10.1088/0953-8984/21/39/395502
  • Gutiérrez Moreno, J. J., Papageorgiou, D. G., Evangelakis, G. A., & Lekka, C. E. (2018). An ab initio study of the structural and mechanical alterations of Ti-Nb alloys. Journal of Applied Physics, 124(24), 245102. https://doi.org/10.1063/1.5025926
  • Haines, J., Léger, J., & Bocquillon, G. (2001). Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31(1), 1–23. https://doi.org/10.1146/annurev.matsci.31.1.1
  • Hartwig, A. (2001). Role of magnesium in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 113–121. https://doi.org/10.1016/S0027-5107(01)00074-4
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. https://doi.org/10.1063/1.4812323
  • Kuwahara, H., Al-Abdullat, Y., Mazaki, N., Tsutsumi, S., & Aizawa, T. (2001). Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank&amp;rsquo;s Solution. MATERIALS TRANSACTIONS, 42(7), 1317–1321. https://doi.org/10.2320/matertrans.42.1317
  • Li, X., Guo, C., Liu, X., Liu, L., Bai, J., Xue, F., … Chu, C. (2014). Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires. Progress in Natural Science: Materials International, 24(5), 472–478. https://doi.org/10.1016/j.pnsc.2014.08.003
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  • Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616. https://doi.org/10.1103/PhysRevB.40.3616
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. https://doi.org/10.1103/PHYSREVB.13.5188
  • Nagels, J., Stokdijk, M., & Rozing, P. M. (2003). Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 12(1), 35–39. https://doi.org/10.1067/mse.2003.22
  • Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1–2), 231–236. https://doi.org/10.1016/S0921-5093(97)00806-X
  • Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3), 477–486. https://doi.org/10.1007/S11661-002-0109-2
  • Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. New York: Oxford University Press.
  • Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17(7–8), 679–680. https://doi.org/10.1016/S0899-9007(01)00551-2
  • Ozaki, T., Matsumoto, H., Watanabe, S., & Hanada, S. (2004). Beta Ti Alloys with Low Young’s Modulus. MATERIALS TRANSACTIONS, 45(8), 2776–2779. https://doi.org/10.2320/matertrans.45.2776
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, ed.). Kyrenia-TRNC: 4 th International Congress on Multidisciplinary Studies.
  • Özer, T. (2021). Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method. Computational Condensed Matter, 28, e00568. https://doi.org/10.1016/J.COCOM.2021.E00568
  • Paufler, P. (1990). L. L. Gibson, M. F. Ashby. Cellular solids. Structure &amp; properties. Crystal Research and Technology, 25(9), 1038–1038. https://doi.org/10.1002/crat.2170250912
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Petit, A. T., & Dulong, P. L. (1819). Recherches sur quelques points importans de la théorie de la chaleur. Içinde Annales de chimie et de physique (ss. 395–413). Paris.
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM, 65(11), 1501–1509. https://doi.org/10.1007/s11837-013-0755-4
  • Saris, N.-E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium. Clinica Chimica Acta, 294(1–2), 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2
  • Serre, C. M., Papillard, M., Chavassieux, P., Voegel, J. C., & Boivin, G. (1998). Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42(4), 626–633. https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Sumner, D. R., Turner, T. M., Igloria, R., Urban, R. M., & Galante, J. O. (1998). Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 31(10), 909–917. https://doi.org/10.1016/S0021-9290(98)00096-7
  • Šupová, M. (2015). Substituted hydroxyapatites for biomedical applications: A review. Ceramics International, 41(8), 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316
  • Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Velikokhatnyi, O. I., & Kumta, P. N. (2018). First principles study of the elastic properties of magnesium and iron based bio-resorbable alloys. Materials Science and Engineering: B, 230, 20–23. https://doi.org/10.1016/j.mseb.2017.12.024
  • Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24(1–3), 27–37. https://doi.org/10.1016/S0098-2997(02)00089-4
  • Wen, C. ., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., & Asahina, T. (2001). Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45(10), 1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0
  • Wiesmann, H.-P., Tkotz, T., Joos, U., Zierold, K., Stratmann, U., Szuwart, T., … Höhling, H. J. (1997). Magnesium in Newly Formed Dentin Mineral of Rat Incisor. Journal of Bone and Mineral Research, 12(3), 380–383. https://doi.org/10.1359/jbmr.1997.12.3.380
  • Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), 3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049
  • Wolf, F. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24(1–3), 3–9. https://doi.org/10.1016/S0098-2997(02)00087-0
  • Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., & Uchida, T. (2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials, 24(27), 4913–4920. https://doi.org/10.1016/S0142-9612(03)00414-9
  • Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Uchida, T., Kubo, T., … Matsuura, N. (2002). Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. Journal of Biomedical Materials Research, 62(1), 99–105. https://doi.org/10.1002/jbm.10220
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLES
Authors

Nihat Arıkan

Tahsin Özer 0000-0003-0344-7118

Publication Date December 12, 2022
Submission Date April 28, 2022
Acceptance Date August 18, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Arıkan, N., & Özer, T. (2022). Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1656-1671. https://doi.org/10.47495/okufbed.1110625
AMA Arıkan N, Özer T. Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1656-1671. doi:10.47495/okufbed.1110625
Chicago Arıkan, Nihat, and Tahsin Özer. “Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1656-71. https://doi.org/10.47495/okufbed.1110625.
EndNote Arıkan N, Özer T (December 1, 2022) Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1656–1671.
IEEE N. Arıkan and T. Özer, “Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1656–1671, 2022, doi: 10.47495/okufbed.1110625.
ISNAD Arıkan, Nihat - Özer, Tahsin. “Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1656-1671. https://doi.org/10.47495/okufbed.1110625.
JAMA Arıkan N, Özer T. Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1656–1671.
MLA Arıkan, Nihat and Tahsin Özer. “Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1656-71, doi:10.47495/okufbed.1110625.
Vancouver Arıkan N, Özer T. Magnezyum Bazlı Mg3Bi Biyo-Emilebilir Alaşımların Elastik Özelliklerinin Ab İnitio Çalışması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1656-71.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.