Review
BibTex RIS Cite

Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri

Year 2023, Volume: 6 Issue: 2, 1662 - 1674, 05.07.2023

Abstract

Kanser, hücrelerin kontrolsüz çoğalması ve anormal yayılma göstermesi ile karakterize son derece ölümcül bir hastalıktır. Son yıllardaki en önemli sağlık sorunlarından birisi olan kanser kalp hastalıklarından sonra ikinci sırada gelmektedir. Çeşitli nedenlere bağlı olarak normal hücrelerin farklılaşmaları ile oluşurlar. Kendilerine özgü, normal hücrelerde olmayan özellikler geliştirmişlerdir. Bu özelliklerden biri apoptozdan kaçma yeteneğidir. Belirli sinyallere yanıt olarak hücre proliferasyonunu ve homeostazı dengelemek için hücre ölüm sürecini tetikleyen apoptoz, programlı hücre ölümüdür. Düzenlenmesinde hatalar olması, kanseri ayırt etmede önem taşımaktadır. Kanserin tedavi aşamasında, kanser hücrelerini apoptoza götürmek için farklı arayışlar mevcuttur. Bunlardan birisi fitokimyasal bileşiklerdir. Bitkilerde bulunan, insan sağlığı için faydalı etkilere sahip besleyici olmayan bileşiklere fitokimyasallar denir. Şimdiki tıp biliminde, kişiselleştirilmiş tıbbın geliştirilmesi, farklı tedavi seçenekleri ve fitokimyasalların gıda takviyesi olarak tüketilmesi, kanser terapötikleri açısından yüksek prevalansa sahip olacaktır. İnsan sağlığı ve moleküler mekanizmaları üzerinde etkisi olan bu fitokimyasallar, kanser terapötiklerinin kullanımında yenilikler getirecektir. Fitokimyasalların kanser ilerlemesinin önlenmesi ve çoğu insan malignitesinin tedavisi için tek başına veya geleneksel terapötiklerle kombinasyon halinde faydalı olabileceğine inanılmaktadır. Bu derlemede, fitokimyasalların kanser tedavisi üzerine apoptotik etkileri vurgulanmıştır.

References

  • Ames BN., ve Wakimoto P. Are vitamin and mineral deficiencies a major cancer risk? Nature Reviews Cancer 2002; 2(9): 694–704. https://doi.org/10.1038/nrc886
  • Amin ARMR., Kucuk O., Khuri FR., ve Shin DM. Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology 2009; 27(16): 2712–2725. https://doi.org/10.1200/JCO.2008.20.6235
  • Andón FT., ve Fadeel B. Programmed cell death: molecular mechanisms and ımplications for safety assessment of nanomaterials. Medicina (Kaunas, Lithuania) 2013; 38(9): 869–875.
  • Bhutia SK., Panda PK., Sinha N., Praharaj PP., Bhol CS., Panigrahi DP., Mahapatra KK., Saha S., Patra S., Mishra SR., Behera BP., Patil S., ve Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacological Research 2019; 144: 8–18. https://doi.org/10.1016/j.phrs.2019.04.001
  • Boulares AH., Yakovlev AG., Ivanova V., Stoica BA., Wang G., Iyer S., ve Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. Journal of Biological Chemistry 1999; 274(33): 22932–22940. https://doi.org/10.1074/jbc.274.33.22932
  • Bray F., Ferlay J., Soerjomataram I., Siegel RL., Torre LA., ve Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68(6): 394–424. https://doi.org/10.3322/caac.21492
  • Chen S., Rehman SK., Zhang W., Wen A., Yao L., ve Zhang J. Autophagy is a therapeutic target in anticancer drug resistance. Biochimica et Biophysica Acta - Reviews on Cancer 2010; 1806(2): 220–229. https://doi.org/10.1016/j.bbcan.2010.07.003
  • Chen Y., ve Yu L. Autophagic lysosome reformation. Experimental Cell Research 2013; 319(2): 142–146. https://doi.org/10.1016/j.yexcr.2012.09.004
  • Danial NN., ve Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116(2): 205–219. https://doi.org/10.1016/S0092-8674(04)00046-7
  • Deng S., Shanmugam MK., Kumar AP., Yap CT., Sethi G., ve Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125(8): 1228–1246. https://doi.org/10.1002/cncr.31978
  • Dixon RA., ve Ferreira D. Genistein. XPharm: The Comprehensive Pharmacology Reference 2002; 60: 205–211. https://doi.org/10.1016/B978-008055232-3.61820-3
  • Feng S., ve De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal 2022; 289(5): 1214–1239. https://doi.org/10.1111/febs.15750
  • Globocan. Database 2020. Erişim adresi: https://gco.iarc.fr/, Erişim Tarihi: 20.11.2021
  • Grabacka MM., Gawin M., ve Pierzchalska M. Phytochemical modulators of mitochondria: The search for chemopreventive agents and supportive therapeutics. Pharmaceuticals 2014; 7(9): 913–942. https://doi.org/10.3390/ph7090913
  • Gupta S., Hussain T., ve Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics 2003; 410(1): 177–185. https://doi.org/10.1016/S0003-9861(02)00668-9
  • Hanrahan AJ., Iyer G., ve Solit DB. Intracellular signaling. In Abeloff’s Clinical Oncology (Sixth Edit), Part I: Science and Clinical Oncology. Elsevier 2020. https://doi.org/10.1016/B978-0-323-47674-4.00002-5
  • Hastak K., Gupta S., Ahmad N., Agarwal MK., Agarwal ML., ve Mukhtar H. Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003; 22(31): 4851–4859. https://doi.org/10.1038/sj.onc.1206708
  • Igney FH., ve Krammer PH. Death and antı-death: Tumour resıstance to apoptosıs. 2002; Volume 2; 277-288. https://doi.org/10.1038/nrc776
  • Imani A., Maleki N., Bohlouli S., Sharifi S., Dizaj SM. Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research 2020; 1-14. https://doi.org/10.1002/ptr.6977
  • Jan R., ve Chaudhry GS. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Journal of Cardiovascular and Thoracic Research 2019; 9(2): 205–218. https://doi.org/10.15171/jcvtr.2015.24
  • Jemal A., Bray F., ve Ferlay J. Global Cancer Statistics: 2011. CA: A Cancer Journal for Clinicians 2011; 61(2): 69–90. https://doi.org/10.3322/caac.20107.Available
  • Kalkavan H., ve Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death and Differentiation 2018; 25(1): 46–55. https://doi.org/10.1038/cdd.2017.179
  • Karin M., Cao Y., Greten FR., ve Li Z. NF- κ B ın cancer : from ınnocent bystander to major culprıt. Nature Revıews Cancer 2002; Volume 2: 1–10. https://doi.org/10.1038/nrc780
  • Khan N., Afaq F., ve Mukhtar H. Apoptosis by dietary factors: The suicide solution for delaying cancer growth. In Carcinogenesis 2007; 28(2): 233–239. https://doi.org/10.1093/carcin/bgl243
  • Kitada S., Pedersen IM., Schimmer AD., ve Reed JC. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21: 3459–3474. https://doi.org/10.1038/sj.onc.1205327
  • Klaus A., ve Birchmeier W. Wnt signalling and its impact on development and cancer. Nature reviews cancer 2008; Volume 8: 387-398
  • Lamartiniere CA, Cotroneo MS, Fritz WA, Wang J, Mentor-Marcel R and Elgavish A. Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. American Society for Nutritional Sciences, 2002; Table 1: 570–573.
  • Law BYK., Mok SWF., Wu AG., Lam CWK., Yu MXY., Wong VKW., ve McPhee DJ. New potential pharmacological functions of Chinese herbal medicines via regulation of autophagy. In Molecules 2016; 21(3): 359-404. https://doi.org/10.3390/molecules21030359
  • Lee MM., Gomez SL., Chang JS., Wey M., Wang RT., ve Hsing AW. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiology Biomarkers and Prevention 2003; 12(7): 665–668.
  • Li M., Gao P., ve Zhang J. Crosstalk between autophagy and apoptosis: Potential and emerging therapeutic targets for cardiac diseases. International Journal of Molecular Sciences 2016; 17(3): 1–19. https://doi.org/10.3390/ijms17030332
  • Li Y., Kong D., Bao B., Ahmad A., ve Sarkar FH. Induction of cancer cell death by isoflavone: The role of multiple signaling pathways. Nutrients 2011; 3(10): 877–896. https://doi.org/10.3390/nu3100877
  • Li Y., Li X., ve Sarkar FH. Gene expression profiles of 13C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. Journal of Nutrition 2003; 133(4): 1011–1019. https://doi.org/10.1093/jn/133.4.1011
  • Li Y., ve Sarkar FH. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Letters 2002; 186(2): 157–164. https://doi.org/10.1016/S0304-3835(02)00349-X
  • Liu RH. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. Journal of Nutrition 2004; 134(12 SUPPL.): 3479–3485. https://doi.org/10.1093/jn/134.12.3479s
  • Lowe SW., ve Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21(3): 485–495.
  • Martin GS. Cell signaling and cancer. Cancer Cell 2003; 4: 167–174.
  • Meier P., Finch A., ve Evan G. Apoptosis in development. Nature 2000; 407(6805): 796–801. https://doi.org/10.1038/35037734
  • Mishra S., Verma SS., Rai V., Awasthee N., Chava S., Man K., Kumar AP., Challagundla KB., Sethi G., Gupta SC., Buffett P., ve Centre NC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cellular and Molecular Life Sciences 2019; 76(10): 1947–1966. https://doi.org/10.1007/s00018-019-03053-0.Long
  • Moosavi MA., Haghi A., Rahmati M., Taniguchi H., Mocan A., Echeverría J., Gupta VK., Tzvetkov NT., ve Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters 2018; 424: 46–69. https://doi.org/10.1016/j.canlet.2018.02.030
  • Mukhtar H., ve Ahmad N. Green tea in chemoprevention of cancer. Toxicological Sciences 1999; 52(2 SUPPL.): 111–117. https://doi.org/10.1093/toxsci/52.2.111
  • Nounou MI., Elamrawy F., Ahmed N., Abdelraouf K., Goda S., ve Syed-Sha-Qhattal H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer: Basic and Clinical Research 2015; 9(S2): 17–34. https://doi.org/10.4137/BCBCR.S29420
  • Ouyang L., Shi Z., Zhao S., Wang FT., Zhou TT., Liu B., ve Bao JK. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation 2012; 45(6): 487–498. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  • Patra S., Bhol CS., Panigrahi DP., Praharaj PP., Pradhan B., Jena M., ve Bhutia SK. Gamma irradiation promotes chemo-sensitization potential of gallic acid through attenuation of autophagic flux to trigger apoptosis in an NRF2 inactivation signalling pathway. Free Radical Biology and Medicine 2020; 160: 111–124. https://doi.org/10.1016/j.freeradbiomed.2020.06.022
  • Patra S., Mishra SR., Behera BP., Mahapatra KK., Panigrahi DP., Bhol CS., Praharaj PP., Sethi G., Patra SK., ve Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Seminars in Cancer Biology 2022; 80: 205–217. https://doi.org/10.1016/j.semcancer.2020.05.008
  • Patra S., Panda PK., Panigrahi DP., Praharaj PP., Bhol CS., Mahapatra KK., Padhi P., Jena M., Patil S., Patra SK., ve Bhutia SK. Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food and Chemical Toxicology 2020; 136: 111073. https://doi.org/10.1016/j.fct.2019.111073
  • Patra, S., Pradhan, B., Nayak, R., Behera, C., Panda, K. C., Das, S., Jena, M., ve Bhutia, S. K. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytotherapy Research 2021; 35(8): 4194–4214. https://doi.org/10.1002/ptr.7082
  • Rahman MA., Hannan MA., Dash R., Rahman MH., Islam R., Uddin MJ., Sohag AAM., Rahman MH., ve Rhim H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of the autophagy-apoptosis pathway. Frontiers in Pharmacology 2021; 12: 1–20. https://doi.org/10.3389/fphar.2021.639628
  • Russo M., Spagnuolo C., Tedesco I., ve Russo GL. Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins 2010; 2(4): 517–551. https://doi.org/10.3390/toxins2040517
  • Ruvolo PP., Deng X., ve May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15(4): 515–522. https://doi.org/10.1038/sj.leu.2402090
  • Saylor PJ., Keating NL., ve Smith MR. Prostate cancer survivorship : Prevention and treatment of the adverse effects of androgen deprivation therapy. Journal of General Internal Medicine 2009: 389–394. https://doi.org/10.1007/s11606-009-0968-y
  • Sebolt-leopold JS., ve Herrera R. Targeting the mitogen- activated protein kinase cascade to treat cancer. Nature Revıews Cancer 2004; 4: 937-947. https://doi.org/10.1038/nrc1503
  • Shaw AS., ve Filbert EL. Scaffold proteins and immune-cell signalling. Nature Revıews Immunology 2009; 9: 47-56. https://doi.org/10.1038/nri2473
  • Shi Y. Caspase activation: Revisiting the induced proximity model. Cell 2004; 117(7): 855–858. https://doi.org/10.1016/j.cell.2004.06.007
  • Si H., ve Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. Bone 2014; 25(6): 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001.Dietary
  • Singh AK., Sharma N., Ghosh M., Park YH., ve Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Critical Reviews in Food Science and Nutrition 2017; 57(16): 3449–3463. https://doi.org/10.1080/10408398.2015.1129310
  • Smith-Warner SA., Spiegelman D., Yaun SS., Albanes D., Beeson, WL., Van Den Brandt PA., Feskanich D., Folsom AR., Fraser GE., Freudenheim JL., Giovannucci E., Goldbohm RA., Graham S., Kushi LH., Miller AB., Pietinen P., Rohan TE., Speizer FE., Willett WC., ve Hunter DJ. Fruits, vegetables and lung cancer: A pooled analysis of cohort studies. International Journal of Cancer 2003; 107(6): 1001–1011. https://doi.org/10.1002/ijc.11490
  • Stiewe T. The p53 family in differentiation and tumorigenesis. Nature Revıews Cancer 2007; 7: 165–168.
  • Sun CY., Zhang QY., Zheng GJ., ve Feng B. Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemotherapy and Pharmacology 2019; 83(1): 17–26. https://doi.org/10.1007/s00280-018-3707-4
  • Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 2003; 3(10): 768–780. https://doi.org/10.1038/nrc1189
  • Tatum JL. Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology 2006; 82(10): 699–757. https://doi.org/10.1080/09553000601002324
  • Teh BT., ve Fearon ER. Genetic and Epigenetic alterations in cancer. In Abeloff’s Clinical Oncology (Sixth Edit). Elsevier 2020. https://doi.org/10.1016/B978-0-323-47674-4.00014-1
  • Torre LA., Bray F., Siegel RL., Ferlay J., Lortet-Tieulent J., ve Jemal A. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians 2015; 65(2): 87–108. https://doi.org/10.3322/caac.21262
  • Tuorkey MJ. Cancer therapy with phytochemicals: Present and future perspectives. biomedical and environmental sciences 2015; 28(11): 808–819. https://doi.org/10.1016/S0895-3988(15)30111-2
  • Vousden KH., ve Lu X. Live or let die: The cell’s response to p53. Nature Reviews Cancer 2002; 2(8): 594–604. https://doi.org/10.1038/nrc864
  • Wang J., ve Yi J. Cancer cell killing via ROS: To increase or decrease, that is a question. Cancer Biology and Therapy 2008; 7(12): 1875–1884. https://doi.org/10.4161/cbt.7.12.7067
  • Yahya EB., ve Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences 2021; 269: 119087. https://doi.org/10.1016/j.lfs.2021.119087
  • Zhou Z., Sun X., ve Kang YJ. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. American Journal of Pathology 2001; 159(1): 329–338. https://doi.org/10.1016/S0002-9440(10)61699-9

Apoptotic Effects of Phytochemicals on Cancer Cells

Year 2023, Volume: 6 Issue: 2, 1662 - 1674, 05.07.2023

Abstract

Cancer is an extremely deadly disease characterized by uncontrolled proliferation and abnormal spread of cells. Cancer, one of the most important health problems in recent years, comes second after heart diseases. They are formed by the differentiation of normal cells due to various reasons. They have developed unique features that are not found in normal cells. One of these traits is the ability to escape apoptosis. Apoptosis is programmed cell death, which triggers the cell death process to balance cell proliferation and homeostasis in response to certain signals. Errors in regulation are important in distinguishing cancer. In the treatment phase of cancer, there are different searches to lead cancer cells to apoptosis. One of them is phytochemical compounds. Non-nutritive compounds found in plants that have beneficial effects for human health are called phytochemicals. In current medical science, the development of personalized medicine, different treatment options and consumption of phytochemicals as food supplements will have a high prevalence for cancer therapeutics. These phytochemicals, which have an impact on human health and molecular mechanisms, will bring innovations in the use of cancer therapeutics. It is believed that phytochemicals may be useful alone or in combination with conventional therapeutics for the prevention of cancer progression and the treatment of most human malignancies. In this review, apoptotic effects of phytochemicals on cancer treatment are emphasized.

References

  • Ames BN., ve Wakimoto P. Are vitamin and mineral deficiencies a major cancer risk? Nature Reviews Cancer 2002; 2(9): 694–704. https://doi.org/10.1038/nrc886
  • Amin ARMR., Kucuk O., Khuri FR., ve Shin DM. Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology 2009; 27(16): 2712–2725. https://doi.org/10.1200/JCO.2008.20.6235
  • Andón FT., ve Fadeel B. Programmed cell death: molecular mechanisms and ımplications for safety assessment of nanomaterials. Medicina (Kaunas, Lithuania) 2013; 38(9): 869–875.
  • Bhutia SK., Panda PK., Sinha N., Praharaj PP., Bhol CS., Panigrahi DP., Mahapatra KK., Saha S., Patra S., Mishra SR., Behera BP., Patil S., ve Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacological Research 2019; 144: 8–18. https://doi.org/10.1016/j.phrs.2019.04.001
  • Boulares AH., Yakovlev AG., Ivanova V., Stoica BA., Wang G., Iyer S., ve Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. Journal of Biological Chemistry 1999; 274(33): 22932–22940. https://doi.org/10.1074/jbc.274.33.22932
  • Bray F., Ferlay J., Soerjomataram I., Siegel RL., Torre LA., ve Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68(6): 394–424. https://doi.org/10.3322/caac.21492
  • Chen S., Rehman SK., Zhang W., Wen A., Yao L., ve Zhang J. Autophagy is a therapeutic target in anticancer drug resistance. Biochimica et Biophysica Acta - Reviews on Cancer 2010; 1806(2): 220–229. https://doi.org/10.1016/j.bbcan.2010.07.003
  • Chen Y., ve Yu L. Autophagic lysosome reformation. Experimental Cell Research 2013; 319(2): 142–146. https://doi.org/10.1016/j.yexcr.2012.09.004
  • Danial NN., ve Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116(2): 205–219. https://doi.org/10.1016/S0092-8674(04)00046-7
  • Deng S., Shanmugam MK., Kumar AP., Yap CT., Sethi G., ve Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125(8): 1228–1246. https://doi.org/10.1002/cncr.31978
  • Dixon RA., ve Ferreira D. Genistein. XPharm: The Comprehensive Pharmacology Reference 2002; 60: 205–211. https://doi.org/10.1016/B978-008055232-3.61820-3
  • Feng S., ve De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal 2022; 289(5): 1214–1239. https://doi.org/10.1111/febs.15750
  • Globocan. Database 2020. Erişim adresi: https://gco.iarc.fr/, Erişim Tarihi: 20.11.2021
  • Grabacka MM., Gawin M., ve Pierzchalska M. Phytochemical modulators of mitochondria: The search for chemopreventive agents and supportive therapeutics. Pharmaceuticals 2014; 7(9): 913–942. https://doi.org/10.3390/ph7090913
  • Gupta S., Hussain T., ve Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics 2003; 410(1): 177–185. https://doi.org/10.1016/S0003-9861(02)00668-9
  • Hanrahan AJ., Iyer G., ve Solit DB. Intracellular signaling. In Abeloff’s Clinical Oncology (Sixth Edit), Part I: Science and Clinical Oncology. Elsevier 2020. https://doi.org/10.1016/B978-0-323-47674-4.00002-5
  • Hastak K., Gupta S., Ahmad N., Agarwal MK., Agarwal ML., ve Mukhtar H. Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003; 22(31): 4851–4859. https://doi.org/10.1038/sj.onc.1206708
  • Igney FH., ve Krammer PH. Death and antı-death: Tumour resıstance to apoptosıs. 2002; Volume 2; 277-288. https://doi.org/10.1038/nrc776
  • Imani A., Maleki N., Bohlouli S., Sharifi S., Dizaj SM. Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research 2020; 1-14. https://doi.org/10.1002/ptr.6977
  • Jan R., ve Chaudhry GS. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Journal of Cardiovascular and Thoracic Research 2019; 9(2): 205–218. https://doi.org/10.15171/jcvtr.2015.24
  • Jemal A., Bray F., ve Ferlay J. Global Cancer Statistics: 2011. CA: A Cancer Journal for Clinicians 2011; 61(2): 69–90. https://doi.org/10.3322/caac.20107.Available
  • Kalkavan H., ve Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death and Differentiation 2018; 25(1): 46–55. https://doi.org/10.1038/cdd.2017.179
  • Karin M., Cao Y., Greten FR., ve Li Z. NF- κ B ın cancer : from ınnocent bystander to major culprıt. Nature Revıews Cancer 2002; Volume 2: 1–10. https://doi.org/10.1038/nrc780
  • Khan N., Afaq F., ve Mukhtar H. Apoptosis by dietary factors: The suicide solution for delaying cancer growth. In Carcinogenesis 2007; 28(2): 233–239. https://doi.org/10.1093/carcin/bgl243
  • Kitada S., Pedersen IM., Schimmer AD., ve Reed JC. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21: 3459–3474. https://doi.org/10.1038/sj.onc.1205327
  • Klaus A., ve Birchmeier W. Wnt signalling and its impact on development and cancer. Nature reviews cancer 2008; Volume 8: 387-398
  • Lamartiniere CA, Cotroneo MS, Fritz WA, Wang J, Mentor-Marcel R and Elgavish A. Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. American Society for Nutritional Sciences, 2002; Table 1: 570–573.
  • Law BYK., Mok SWF., Wu AG., Lam CWK., Yu MXY., Wong VKW., ve McPhee DJ. New potential pharmacological functions of Chinese herbal medicines via regulation of autophagy. In Molecules 2016; 21(3): 359-404. https://doi.org/10.3390/molecules21030359
  • Lee MM., Gomez SL., Chang JS., Wey M., Wang RT., ve Hsing AW. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiology Biomarkers and Prevention 2003; 12(7): 665–668.
  • Li M., Gao P., ve Zhang J. Crosstalk between autophagy and apoptosis: Potential and emerging therapeutic targets for cardiac diseases. International Journal of Molecular Sciences 2016; 17(3): 1–19. https://doi.org/10.3390/ijms17030332
  • Li Y., Kong D., Bao B., Ahmad A., ve Sarkar FH. Induction of cancer cell death by isoflavone: The role of multiple signaling pathways. Nutrients 2011; 3(10): 877–896. https://doi.org/10.3390/nu3100877
  • Li Y., Li X., ve Sarkar FH. Gene expression profiles of 13C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. Journal of Nutrition 2003; 133(4): 1011–1019. https://doi.org/10.1093/jn/133.4.1011
  • Li Y., ve Sarkar FH. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Letters 2002; 186(2): 157–164. https://doi.org/10.1016/S0304-3835(02)00349-X
  • Liu RH. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. Journal of Nutrition 2004; 134(12 SUPPL.): 3479–3485. https://doi.org/10.1093/jn/134.12.3479s
  • Lowe SW., ve Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21(3): 485–495.
  • Martin GS. Cell signaling and cancer. Cancer Cell 2003; 4: 167–174.
  • Meier P., Finch A., ve Evan G. Apoptosis in development. Nature 2000; 407(6805): 796–801. https://doi.org/10.1038/35037734
  • Mishra S., Verma SS., Rai V., Awasthee N., Chava S., Man K., Kumar AP., Challagundla KB., Sethi G., Gupta SC., Buffett P., ve Centre NC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cellular and Molecular Life Sciences 2019; 76(10): 1947–1966. https://doi.org/10.1007/s00018-019-03053-0.Long
  • Moosavi MA., Haghi A., Rahmati M., Taniguchi H., Mocan A., Echeverría J., Gupta VK., Tzvetkov NT., ve Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters 2018; 424: 46–69. https://doi.org/10.1016/j.canlet.2018.02.030
  • Mukhtar H., ve Ahmad N. Green tea in chemoprevention of cancer. Toxicological Sciences 1999; 52(2 SUPPL.): 111–117. https://doi.org/10.1093/toxsci/52.2.111
  • Nounou MI., Elamrawy F., Ahmed N., Abdelraouf K., Goda S., ve Syed-Sha-Qhattal H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer: Basic and Clinical Research 2015; 9(S2): 17–34. https://doi.org/10.4137/BCBCR.S29420
  • Ouyang L., Shi Z., Zhao S., Wang FT., Zhou TT., Liu B., ve Bao JK. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation 2012; 45(6): 487–498. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  • Patra S., Bhol CS., Panigrahi DP., Praharaj PP., Pradhan B., Jena M., ve Bhutia SK. Gamma irradiation promotes chemo-sensitization potential of gallic acid through attenuation of autophagic flux to trigger apoptosis in an NRF2 inactivation signalling pathway. Free Radical Biology and Medicine 2020; 160: 111–124. https://doi.org/10.1016/j.freeradbiomed.2020.06.022
  • Patra S., Mishra SR., Behera BP., Mahapatra KK., Panigrahi DP., Bhol CS., Praharaj PP., Sethi G., Patra SK., ve Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Seminars in Cancer Biology 2022; 80: 205–217. https://doi.org/10.1016/j.semcancer.2020.05.008
  • Patra S., Panda PK., Panigrahi DP., Praharaj PP., Bhol CS., Mahapatra KK., Padhi P., Jena M., Patil S., Patra SK., ve Bhutia SK. Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food and Chemical Toxicology 2020; 136: 111073. https://doi.org/10.1016/j.fct.2019.111073
  • Patra, S., Pradhan, B., Nayak, R., Behera, C., Panda, K. C., Das, S., Jena, M., ve Bhutia, S. K. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytotherapy Research 2021; 35(8): 4194–4214. https://doi.org/10.1002/ptr.7082
  • Rahman MA., Hannan MA., Dash R., Rahman MH., Islam R., Uddin MJ., Sohag AAM., Rahman MH., ve Rhim H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of the autophagy-apoptosis pathway. Frontiers in Pharmacology 2021; 12: 1–20. https://doi.org/10.3389/fphar.2021.639628
  • Russo M., Spagnuolo C., Tedesco I., ve Russo GL. Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins 2010; 2(4): 517–551. https://doi.org/10.3390/toxins2040517
  • Ruvolo PP., Deng X., ve May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15(4): 515–522. https://doi.org/10.1038/sj.leu.2402090
  • Saylor PJ., Keating NL., ve Smith MR. Prostate cancer survivorship : Prevention and treatment of the adverse effects of androgen deprivation therapy. Journal of General Internal Medicine 2009: 389–394. https://doi.org/10.1007/s11606-009-0968-y
  • Sebolt-leopold JS., ve Herrera R. Targeting the mitogen- activated protein kinase cascade to treat cancer. Nature Revıews Cancer 2004; 4: 937-947. https://doi.org/10.1038/nrc1503
  • Shaw AS., ve Filbert EL. Scaffold proteins and immune-cell signalling. Nature Revıews Immunology 2009; 9: 47-56. https://doi.org/10.1038/nri2473
  • Shi Y. Caspase activation: Revisiting the induced proximity model. Cell 2004; 117(7): 855–858. https://doi.org/10.1016/j.cell.2004.06.007
  • Si H., ve Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. Bone 2014; 25(6): 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001.Dietary
  • Singh AK., Sharma N., Ghosh M., Park YH., ve Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Critical Reviews in Food Science and Nutrition 2017; 57(16): 3449–3463. https://doi.org/10.1080/10408398.2015.1129310
  • Smith-Warner SA., Spiegelman D., Yaun SS., Albanes D., Beeson, WL., Van Den Brandt PA., Feskanich D., Folsom AR., Fraser GE., Freudenheim JL., Giovannucci E., Goldbohm RA., Graham S., Kushi LH., Miller AB., Pietinen P., Rohan TE., Speizer FE., Willett WC., ve Hunter DJ. Fruits, vegetables and lung cancer: A pooled analysis of cohort studies. International Journal of Cancer 2003; 107(6): 1001–1011. https://doi.org/10.1002/ijc.11490
  • Stiewe T. The p53 family in differentiation and tumorigenesis. Nature Revıews Cancer 2007; 7: 165–168.
  • Sun CY., Zhang QY., Zheng GJ., ve Feng B. Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemotherapy and Pharmacology 2019; 83(1): 17–26. https://doi.org/10.1007/s00280-018-3707-4
  • Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 2003; 3(10): 768–780. https://doi.org/10.1038/nrc1189
  • Tatum JL. Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology 2006; 82(10): 699–757. https://doi.org/10.1080/09553000601002324
  • Teh BT., ve Fearon ER. Genetic and Epigenetic alterations in cancer. In Abeloff’s Clinical Oncology (Sixth Edit). Elsevier 2020. https://doi.org/10.1016/B978-0-323-47674-4.00014-1
  • Torre LA., Bray F., Siegel RL., Ferlay J., Lortet-Tieulent J., ve Jemal A. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians 2015; 65(2): 87–108. https://doi.org/10.3322/caac.21262
  • Tuorkey MJ. Cancer therapy with phytochemicals: Present and future perspectives. biomedical and environmental sciences 2015; 28(11): 808–819. https://doi.org/10.1016/S0895-3988(15)30111-2
  • Vousden KH., ve Lu X. Live or let die: The cell’s response to p53. Nature Reviews Cancer 2002; 2(8): 594–604. https://doi.org/10.1038/nrc864
  • Wang J., ve Yi J. Cancer cell killing via ROS: To increase or decrease, that is a question. Cancer Biology and Therapy 2008; 7(12): 1875–1884. https://doi.org/10.4161/cbt.7.12.7067
  • Yahya EB., ve Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences 2021; 269: 119087. https://doi.org/10.1016/j.lfs.2021.119087
  • Zhou Z., Sun X., ve Kang YJ. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. American Journal of Pathology 2001; 159(1): 329–338. https://doi.org/10.1016/S0002-9440(10)61699-9
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section REVIEWS
Authors

Elif Tuğçe Samsunlu

Ömer Faruk Lenger 0000-0001-7049-506X

Publication Date July 5, 2023
Submission Date May 27, 2022
Acceptance Date November 28, 2022
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Samsunlu, E. T., & Lenger, Ö. F. (2023). Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1662-1674.
AMA Samsunlu ET, Lenger ÖF. Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. July 2023;6(2):1662-1674.
Chicago Samsunlu, Elif Tuğçe, and Ömer Faruk Lenger. “Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1662-74.
EndNote Samsunlu ET, Lenger ÖF (July 1, 2023) Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1662–1674.
IEEE E. T. Samsunlu and Ö. F. Lenger, “Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 2, pp. 1662–1674, 2023.
ISNAD Samsunlu, Elif Tuğçe - Lenger, Ömer Faruk. “Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1662-1674.
JAMA Samsunlu ET, Lenger ÖF. Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:1662–1674.
MLA Samsunlu, Elif Tuğçe and Ömer Faruk Lenger. “Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1662-74.
Vancouver Samsunlu ET, Lenger ÖF. Fitokimyasalların Kanser Hücreleri Üzerine Apoptotik Etkileri. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(2):1662-74.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.