Research Article
BibTex RIS Cite

Farklı Kitosan ve Polivinil Alkol Oranları Kullanılarak Hazırlanan Kriyojel Doku İskelelerinin Optimizasyon Çalışmaları

Year 2023, Volume: 6 Issue: 2, 1110 - 1121, 05.07.2023

Abstract

Kriyojeller, monomerik veya polimerik başlatıcıların donmuş çözeltilerinden üretilen birbirine bağlı gözenekli matrislerle yapılandırılmış yapı iskeleleridir. Bu yapı iskeleleri, doku mühendisliği, yara örtü ve ilaç salım sistemleri dahil olmak üzere farklı biyomedikal alanlar için arzu edilen özelliklere sahip benzersiz adaylar olarak görülmektedir. Bu çalışmada, polivinil alkol (PVA) ve kitosan (CS) polimerleri kullanılarak PVA:CS kompozit kriyojelleri üretilmiştir. Farklı polimer oranlarında hazırlanan kriyojeller kimyasal yapı, morfoloji, gözeneklilik ve şişme oranı açısından değerlendirilmiştir. Kompozit kriyojellerin kimyasal yapısı Fourier dönüşümü kızılötesi spektroskopisi (FTIR) kullanılarak belirlenmiştir. Birbirine bağlı gözenek morfolojisi, Taramalı Elektron Mikroskobu (SEM) kullanılarak gözlemlenmiştir. Porozite ve şişme oranı değerleri, kriyojellerin ağırlık değişimi esas alınarak belirlenmiştir. Genel olarak tüm numuneler gözenekli bir yapı sergilemiş ve gözeneklilik dahil diğer özelliklerin doku iskelesi yapısındaki her bir polimerin oranına göre farklılık gösterdiği ortaya konmuştur.

Supporting Institution

Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2018-1-TP2-2733

References

  • Akgönüllü, S., Bakhshpour, M., İdil, N., Andaç, M., Yavuz, H., & Denizli, A. (2020). Versatile polymeric cryogels and their biomedical applications. Hacettepe Journal of Biology and Chemistry, 48(2), 99–118. https://doi.org/10.15671/HJBC.629355
  • Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering. Part B, Reviews, 16(4), 371. https://doi.org/10.1089/TEN.TEB.2009.0639
  • Bölgen, N., Demir, D., Yalçın, M. S., & Özdemir, S. (2020). Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. International Journal of Biological Macromolecules, 161, 1581–1590. https://doi.org/10.1016/j.ijbiomac.2020.08.056
  • Ceylan, S., Göktürk, D., Demir, D., Damla Özdemir, M., & Bölgen, N. (2017). Comparison of additive effects on the PVA/starch cryogels: Synthesis, characterization, cytotoxicity, and genotoxicity studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 1–10.
  • Choudhury, M., Mohanty, S., & Nayak, S. (2015). Effect of different solvents in solvent casting of porous PLA scaffolds—In biomedical and tissue engineering applications. Journal of Biomaterials and Tissue Engineering, 5(1), 1–9.
  • Demir, D., Ceylan, S., Göktürk, D., & Bölgen, N. (2020). Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polymer Bulletin, 78, 2211–2226. https://doi.org/10.1007/s00289-020-03208-1
  • Demir, D., Öfkeli, F., Ceylan, S., & Bölgen, N. (2016). Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 3(3). https://doi.org/10.18596/jotcsa.00634
  • El-Sherbiny, I. M., & Yacoub, M. H. (2013). Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice, 2013(3), 316. https://doi.org/10.5339/GCSP.2013.38
  • Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M., & O’Connor, A. J. (2013). Cryogels for biomedical applications. Journal of Materials Chemistry B, 1(21), 2682–2695. https://doi.org/10.1039/C3TB20280A
  • Kanimozhi, K., Khaleel Basha, S., & Sugantha Kumari, V. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering: C, 61, 484–491. https://doi.org/10.1016/J.MSEC.2015.12.084
  • Kumar, A. (2016). Supermacroporous Cryogels Biomedical and Biotechnological Applications.
  • Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering. Part B, Reviews, 19(6), 485. https://doi.org/10.1089/TEN.TEB.2012.0437
  • Pavoni, J. M. F., dos Santos, N. Z., May, I. C., Pollo, L. D., & Tessaro, I. C. (2021). Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polymer Bulletin, 78(2), 981–1000. https://doi.org/10.1007/S00289-020-03140-4/FIGURES/8
  • Razavi, M., Qiao, Y., & Thakor, A. S. (2019). Three-dimensional cryogels for biomedical applications. Journal of Biomedical Materials Research Part A, 107(12), 2736–2755. https://doi.org/10.1002/JBM.A.36777
  • Rogers, Z. J., & Bencherif, S. A. (2019). Cryogelation and Cryogels. Gels, 5(4), 46. https://doi.org/10.3390/GELS5040046
  • Savina, I. N., Zoughaib, M., & Yergeshov, A. A. (2021). Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021, Vol. 7, Page 79, 7(3), 79. https://doi.org/10.3390/GELS7030079
  • Sergeeva, A., Vikulina, A. S., & Volodkin, D. (2019). Porous Alginate Scaffolds Assembled Using Vaterite CaCO3 Crystals. Micromachines 2019, Vol. 10, Page 357, 10(6), 357. https://doi.org/10.3390/MI10060357
  • Sornkamnerd, S., Okajima, M. K., & Kaneko, T. (2017). Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega, 2(8), 5304–5314. https://doi.org/10.1021/ACSOMEGA.7B00602/SUPPL_FILE/AO7B00602_LIVESLIDES.MP4
  • Tang, Y. F., Du, Y. M., Hu, X. W., Shi, X. W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491–499. https://doi.org/10.1016/J.CARBPOL.2006.06.015
  • Tripathi, A., Kathuria, N., & Kumar, A. (2009). Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Journal of Biomedical Materials Research. Part A, 90(3), 680–694. https://doi.org/10.1002/JBM.A.32127

Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios

Year 2023, Volume: 6 Issue: 2, 1110 - 1121, 05.07.2023

Abstract

Cryogels are scaffolds structured with interconnected porous matrices produced from frozen solutions of monomeric or polymeric initiators. These scaffolds are seen as unique candidates with desirable properties for the different biomedical fields including tissue engineering, wound dressing, and drug delivery systems. In this study, polyvinyl alcohol (PVA) and chitosan (CS) were used to fabricate PVA:CS composite cryogels. Cryogels prepared at different polymer ratios were evaluated in terms of chemical structure, morphology, porosity, and swelling ratio. The chemical structure of composite cryogels was determined using Fourier-transform infrared spectroscopy (FTIR). The interconnected pore morphology was observed using Scanning Electron Microscopy (SEM). Porosity and swelling ratio values were determined based on the weight change of the cryogels. In general, all samples exhibited a porous structure, and it was revealed that porosity and other properties differ according to the ratio of each polymer in the scaffolds.

Project Number

2018-1-TP2-2733

References

  • Akgönüllü, S., Bakhshpour, M., İdil, N., Andaç, M., Yavuz, H., & Denizli, A. (2020). Versatile polymeric cryogels and their biomedical applications. Hacettepe Journal of Biology and Chemistry, 48(2), 99–118. https://doi.org/10.15671/HJBC.629355
  • Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering. Part B, Reviews, 16(4), 371. https://doi.org/10.1089/TEN.TEB.2009.0639
  • Bölgen, N., Demir, D., Yalçın, M. S., & Özdemir, S. (2020). Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. International Journal of Biological Macromolecules, 161, 1581–1590. https://doi.org/10.1016/j.ijbiomac.2020.08.056
  • Ceylan, S., Göktürk, D., Demir, D., Damla Özdemir, M., & Bölgen, N. (2017). Comparison of additive effects on the PVA/starch cryogels: Synthesis, characterization, cytotoxicity, and genotoxicity studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 1–10.
  • Choudhury, M., Mohanty, S., & Nayak, S. (2015). Effect of different solvents in solvent casting of porous PLA scaffolds—In biomedical and tissue engineering applications. Journal of Biomaterials and Tissue Engineering, 5(1), 1–9.
  • Demir, D., Ceylan, S., Göktürk, D., & Bölgen, N. (2020). Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polymer Bulletin, 78, 2211–2226. https://doi.org/10.1007/s00289-020-03208-1
  • Demir, D., Öfkeli, F., Ceylan, S., & Bölgen, N. (2016). Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 3(3). https://doi.org/10.18596/jotcsa.00634
  • El-Sherbiny, I. M., & Yacoub, M. H. (2013). Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice, 2013(3), 316. https://doi.org/10.5339/GCSP.2013.38
  • Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M., & O’Connor, A. J. (2013). Cryogels for biomedical applications. Journal of Materials Chemistry B, 1(21), 2682–2695. https://doi.org/10.1039/C3TB20280A
  • Kanimozhi, K., Khaleel Basha, S., & Sugantha Kumari, V. (2016). Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering: C, 61, 484–491. https://doi.org/10.1016/J.MSEC.2015.12.084
  • Kumar, A. (2016). Supermacroporous Cryogels Biomedical and Biotechnological Applications.
  • Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering. Part B, Reviews, 19(6), 485. https://doi.org/10.1089/TEN.TEB.2012.0437
  • Pavoni, J. M. F., dos Santos, N. Z., May, I. C., Pollo, L. D., & Tessaro, I. C. (2021). Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polymer Bulletin, 78(2), 981–1000. https://doi.org/10.1007/S00289-020-03140-4/FIGURES/8
  • Razavi, M., Qiao, Y., & Thakor, A. S. (2019). Three-dimensional cryogels for biomedical applications. Journal of Biomedical Materials Research Part A, 107(12), 2736–2755. https://doi.org/10.1002/JBM.A.36777
  • Rogers, Z. J., & Bencherif, S. A. (2019). Cryogelation and Cryogels. Gels, 5(4), 46. https://doi.org/10.3390/GELS5040046
  • Savina, I. N., Zoughaib, M., & Yergeshov, A. A. (2021). Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021, Vol. 7, Page 79, 7(3), 79. https://doi.org/10.3390/GELS7030079
  • Sergeeva, A., Vikulina, A. S., & Volodkin, D. (2019). Porous Alginate Scaffolds Assembled Using Vaterite CaCO3 Crystals. Micromachines 2019, Vol. 10, Page 357, 10(6), 357. https://doi.org/10.3390/MI10060357
  • Sornkamnerd, S., Okajima, M. K., & Kaneko, T. (2017). Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega, 2(8), 5304–5314. https://doi.org/10.1021/ACSOMEGA.7B00602/SUPPL_FILE/AO7B00602_LIVESLIDES.MP4
  • Tang, Y. F., Du, Y. M., Hu, X. W., Shi, X. W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491–499. https://doi.org/10.1016/J.CARBPOL.2006.06.015
  • Tripathi, A., Kathuria, N., & Kumar, A. (2009). Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Journal of Biomedical Materials Research. Part A, 90(3), 680–694. https://doi.org/10.1002/JBM.A.32127
There are 20 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section RESEARCH ARTICLES
Authors

Gülşah Gül

Didem Demir Karakuş 0000-0002-2977-2077

Nimet Bölgen

Project Number 2018-1-TP2-2733
Publication Date July 5, 2023
Submission Date June 15, 2022
Acceptance Date October 30, 2022
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Gül, G., Demir Karakuş, D., & Bölgen, N. (2023). Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1110-1121.
AMA Gül G, Demir Karakuş D, Bölgen N. Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. July 2023;6(2):1110-1121.
Chicago Gül, Gülşah, Didem Demir Karakuş, and Nimet Bölgen. “Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1110-21.
EndNote Gül G, Demir Karakuş D, Bölgen N (July 1, 2023) Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1110–1121.
IEEE G. Gül, D. Demir Karakuş, and N. Bölgen, “Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 2, pp. 1110–1121, 2023.
ISNAD Gül, Gülşah et al. “Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1110-1121.
JAMA Gül G, Demir Karakuş D, Bölgen N. Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:1110–1121.
MLA Gül, Gülşah et al. “Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1110-21.
Vancouver Gül G, Demir Karakuş D, Bölgen N. Optimization Studies of Cryogel Scaffolds Prepared Using Different Chitosan and Polyvinyl Alcohol Ratios. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(2):1110-21.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.