Research Article
BibTex RIS Cite

Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill)

Year 2023, Volume: 6 Issue: 2, 1513 - 1528, 05.07.2023
https://doi.org/10.47495/okufbed.1238616

Abstract

Bu çalışma, genetik değişkenliğin kapsamını ve modelini değerlendirmek, karakterler arasındaki genetik korelasyonu ortaya çıkarmak ve çeşitli karakterlerin yeşil ot verimi üzerindeki doğrudan ve dolaylı etkilerini tahmin etmek için yapılmıştır. Deneme, 4 soya çeşidi ve hattı ile Tesadüf Blokları Deseninde ve altı tekerrürlü olarak yapılmıştır. Fenotipik varyasyon katsayısı (PCV) genotipik varyasyon katsayısından (GCV) daha yüksek bulunmuştur, ancak tüm karakterler için bu iki tahmin arasındaki fark değişkenliği bazılarında çok yakın, bazılarında çok büyük ve diğerlerinde orta düzeyde tespit edilmiştir. Genetik parametrelerle ilgili olarak, yeşil ot verimi, boğum sayısı, % 50 çiçeklenme gün sayısı ve kuru ot verimi için geniş anlamda kalıtım derecesi (h2), genetik ilerleme (GA) ve ayrıca genetik ilerleme yüzdesi (GAM%) için yüksek değerler kaydedilmiştir. Genotipik korelasyon katsayıları (rg), tüm karakterlerde fenotipik korelasyon katsayılarından (rp) daha büyük bulunmuştur, bu nedenle karakter çiftleri arasında güçlü bir doğal ilişki belirlenmiştir. Yem verimi ile genotipik, fenotipik ve çevresel korelasyon katsayılarının sonuçları ilk bakla yüksekliği, %50 çiçeklenme gün sayısı ve ham protein oranı dışında pozitif ve anlamlı bulunmuştur (P<0.05). Yol katsayısı analizi, olgunlaşma gün sayısı yem verimine maksimum doğrudan katkısı olduğunu ortaya çıkardı. Yol katsayısı analizlerine göre, yem verimi üzerinde en büyük doğrudan etki olgunlaşma gün sayısı tespit edilmiştir.

Supporting Institution

TAGEM

Project Number

TAGEM/ TBAD/B/20/A7/P4/1649

References

  • Aditya JP., Bhartiya P., Bhartiya A. Genetic variability, heritability and character association for yield and component characters in soybean. Journal of Central European Agriculture 2011; 12(1): 27-34.
  • Al-Jibouri HA., Miller PA., Robinson HF. Genotypic and environmental variances in an upland cotton cross of interspecific origin. Agronomy Journal 1958; 50(10): 633-636.
  • Altınok S., Genç A., Erdoğdu I. Farklı ekim şekillerinde yetiştirilen mısır ve soyadan elde edilen silajlarda kalite özelliklerinin belirlenmesi. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül 2005, Antalya-Türkiye.
  • Ayaşan T. Soya silajı ve hayvan beslemede kullanımı. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi 2011; 8(3): 193-200.
  • Basavaraja GT., Naidu GK., Salimath PM. Evaluation of vegetable soybean genotypes for yield and component traits. Karnataka Journal of Agricultural Sciences 2005; 18(1): 27-31
  • Bhuva RB., Babariya CA., Movaliya HM., Gadhiya JA., Balar VS. Correlation and path analysis for seed yield in soybean [Glycine max (L.) Merrill]. Indian Journal of Pure & Applied Biosciences 2020; 8(4): 375-380.
  • Burton GW. Quantitative inheritance in grasses. Proc VI Intern Grassland Congress, August 17-23, PA, 1952; 277-283.
  • Chandrawat KS., Baig KS., Hashmi S., Sarang DH., Kumar A., Dumai PK. Study on genetic variability, heritability and genetic advance in soybean. International Journal of Pure & Applied Bioscience 2017; 5(1): 57-63.
  • Chavan RB., Pulate SC., Thakare DS. Assessment of existing genetic variability and diversity in soybean. Biolife An International Quarterly Journal of Biology & Life Sciences 2014; 2(3): 949-955.
  • Dewey DR., Lu KH. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal 1959; 51(9): 515-518.
  • Dutta P., Goswami PK., Borah M. Assessment of genetic variability, heritability and genetic advance in soybean genotypes. Electronic Journal of Plant Breeding 2021; 12(4): 1461-1465.
  • Erbil E. Determining the adaptability and exploring the potential of some soybean [Glycine max (L.) Merr.] varieties advance lines under the climatic conditions of South-Eastern Region of Turkey. Legume Research-An International Journal 2021; 44(8): 906-910.
  • Ergin N., Kızıl Aydemir S. Importance of soybean plant on animal nutrition. International Journal of Eastern Mediterranean Agricultural Research 2018; 1(1): 143-157 (in Turkish).
  • Ghanbari S., Nooshkam A., Fakheri BA., Mahdinezhad N. Assessment of yield and yield component of soybean genotypes (Glycine max L.) in north of Khuzestan. Journal of Crop Science and Biotechnology 2018; 21(5): 435-441.
  • Goonde DB., Ayana NG. Genetic diversity and character association for yield and yield related traits in soybean (Glycine max L.) genotypes. Journal of Agriculture and Food Research 2021; 12(1): 280.
  • Guleria H., Kumar P., Jyoti B., Kumar A., Paliwal A., Paliwal A. Genetic variability and correlation analysis in soybean (Glycine max (L.) Merrill) genotypes. International Journal of Chemical Studies 2019; 7(1): 1928-1932.
  • Jain RK., Joshi A., Chaudhary HR., Dashora A., Khatik CL. Study on genetic variability, heritability and genetic advance in soybean [Glycine max (L.) merrill]. Legume Research-An International Journal 2018; 41(4): 532-536.
  • Johnson HW., Robinson HF., Comstock RE. Estimates of genetic and environmental variability in soybeans. Agronomy Journal 1955; 47(7): 314-318. Joseph AJ., Smith AS., Danny RE. International soybean variety experiment, tenth report of results. Internatinal Soybean Program INTSOY 1983; 28: 1-18.
  • Karyawati AS., Puspitaningrum ESV. Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean. Biodiversitas Journal of Biological Diversity 2021; 22(3): 1146-1151.
  • Kızıl Aydemir S. Farklı ekim oranlarının mısır-soyanın birlikte üretiminin bazı agronomik ve verim özellikleri üzerine etkisi. Iğdır University Journal of the Institute of Science and Technology 2018; 8(3): 305-311.
  • Kuswantoro H. Effect of planting dates on growth, yield, and phenology of different soybean lines grown under tidal swamp land. Pertanika Journal of Tropical Agricultural Science 2018; 41(3): 1261-1274.
  • Kuswantoro H., Adie MM., Putri PH. Genetic variability, heritability, and genotypic correlation of soybean agronomic characters. Buletin Palawija 2021; 19(2): 117-125.
  • Kutlu HR. Kanatlı hayvan besleme (teorik temel-pratik uygulama) ders notu. 2008. https://silo.tips/download/kanatli-hayvan-besleme-teorik-temel-pratik-uygulama-5 (Erişim tarihi: 30.12.2021)
  • Kutlu HR. Tüm yönleriyle silaj yapımı ve silajla besleme. 2010. http://www.zootekni.org.tr/upload/file/silaj%20el%20ktabi.pdf (Erişim tarihi: 30.12.2021)
  • Lush JL. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science 1940; 1940(1): 293-301.
  • Malek MA., Rafii MY., Afroz MSS., Nath UK., Mondal MMA. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. The Scientific World Journal 2014; 968796.
  • Malik MFA., Qureshi AS., Ashraf M., Ghafoor A. Genetic variability of the main yield related characters in soybean. International Journal of Agriculture and Biology 2006; 8(6): 815-819.
  • Manivannan N. TNAUSTAT-Statistical package. Retrived from https://sites.google.com/site/tnaustat, 2014.
  • Mehra S., Shrivastava MK., Amrate PK., Yadav RB. Studies on variability, correlation coefficient and path analysis for yield associated traits in soybean [Glycine max (L.) Merrill]. Journal of Oilseeds Research 2020; 37(1): 56-59.
  • Mesfin HH. Path analysis, genetic variability and correlation studies for soybean (Glycine max (L.) Merill) for grain yield and secondary traits at Asosa, Western Ethiopia. Greener Journal of Plant Breeding Crop Science 2018; 6(3): 35-46.
  • Nazlıcan AN. Soya yetiştiriciliği. 2010. https://arastirma.tarimorman.gov.tr/cukurovataem/Belgeler/Yeti%C5%9Ftiricilik/soya-yetistiriciligi_1.pdf (Erişim Tarihi:30.12.2021)
  • Neelima G., Mehtre SP., Narkhede GW. Genetic variability, heritability and genetic advance in soybean. International Journal of Pure & Applied Bioscience 2018; 6(2): 1011-1017.
  • Rasaily SK., Desai ND., Kukadia MU. Genetic variability in soybean (Glycine max L. Merrill). Gujarat Agricultural University Research Journal 1986; 11(2): 57-60.
  • Reni YP., Rao YK. Genetic variability in soybean [Glycine max (L) merrill]. International Journal of Plant, Animal and Environmental Sciences 2013; 3(4): 35-38.
  • Robinson HF. Quantitative genetics in relation to breeding on centennial of Mendelism. Indian Journal of Genetics and Plant Breeding 1966; 26(1): 171-87.
  • Sirtioglu I. Oilseeds and products annual - Turkey. USDA Foreign Agricultural Service-Global Agricultural Information Network, 2019; GAIN Report Number: TR9004.
  • Sivasubramanian V., Madhavamenon P. Path analysis for yield and yield components of rice. Madras Agricultural Journal 1973; 60: 1217-1221.
  • Urdă C., Suciu V., Rusu T., Păcurar L., Rezi R., Tritean N., Russu F., Negrea A., Galben RD., Duda MM. Variability and heritability of some agronomical and quality characters of soybean (Glycine max (L.) Merr.) cultivars. Life Science and Sustainable Development 2021; 2(2): 120-126.
  • Vaidya P. Genetic variability and correlation analysis in soybean (Glycine max (L.) Merrill) genotypes. International Journal of Chemical Studies 2019; 7(1): 1928-1932.

Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill)

Year 2023, Volume: 6 Issue: 2, 1513 - 1528, 05.07.2023
https://doi.org/10.47495/okufbed.1238616

Abstract

This study was carried out to assess the extent and pattern of genetic variability, and reveal the genetic correlation among the characters and partition the genetic correlations into direct and indirect effects so as to estimate the direct and indirect effects of various characters on forage yield. The experiment consisted of 4 soybean varieties and lines along with Randomized Block Design and six replications. The phenotypic coefficient of variation (PCV) values were higher than the genotypic coefficient of variation (GCV), but the difference variability between these two estimates for all characters was very close in some, very large in some, and moderate in others. Regarding the genetic parameters, for forage yield, number of nodes, days to 50% flowering, and dry matter yield were recorded high values for heritability (h2) in the broad sense, for genetic advance (GA), and also for genetic advance in percent (GAM%). The genotypic correlation coefficients (rg) were larger than the phenotypic correlation coefficients (rp) in all characters hence there determine a strong natural relationship between character pairs. The results of the genotypic, phenotypic, and environmental correlation coefficients with the forage yield are positive and significant (P<0.05) with the exception of first pod height, days to 50% flowering, and crude protein ratio. Days to maturity had the greatest direct impact on forage yield, according to path coefficient analyses.

Project Number

TAGEM/ TBAD/B/20/A7/P4/1649

References

  • Aditya JP., Bhartiya P., Bhartiya A. Genetic variability, heritability and character association for yield and component characters in soybean. Journal of Central European Agriculture 2011; 12(1): 27-34.
  • Al-Jibouri HA., Miller PA., Robinson HF. Genotypic and environmental variances in an upland cotton cross of interspecific origin. Agronomy Journal 1958; 50(10): 633-636.
  • Altınok S., Genç A., Erdoğdu I. Farklı ekim şekillerinde yetiştirilen mısır ve soyadan elde edilen silajlarda kalite özelliklerinin belirlenmesi. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül 2005, Antalya-Türkiye.
  • Ayaşan T. Soya silajı ve hayvan beslemede kullanımı. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi 2011; 8(3): 193-200.
  • Basavaraja GT., Naidu GK., Salimath PM. Evaluation of vegetable soybean genotypes for yield and component traits. Karnataka Journal of Agricultural Sciences 2005; 18(1): 27-31
  • Bhuva RB., Babariya CA., Movaliya HM., Gadhiya JA., Balar VS. Correlation and path analysis for seed yield in soybean [Glycine max (L.) Merrill]. Indian Journal of Pure & Applied Biosciences 2020; 8(4): 375-380.
  • Burton GW. Quantitative inheritance in grasses. Proc VI Intern Grassland Congress, August 17-23, PA, 1952; 277-283.
  • Chandrawat KS., Baig KS., Hashmi S., Sarang DH., Kumar A., Dumai PK. Study on genetic variability, heritability and genetic advance in soybean. International Journal of Pure & Applied Bioscience 2017; 5(1): 57-63.
  • Chavan RB., Pulate SC., Thakare DS. Assessment of existing genetic variability and diversity in soybean. Biolife An International Quarterly Journal of Biology & Life Sciences 2014; 2(3): 949-955.
  • Dewey DR., Lu KH. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal 1959; 51(9): 515-518.
  • Dutta P., Goswami PK., Borah M. Assessment of genetic variability, heritability and genetic advance in soybean genotypes. Electronic Journal of Plant Breeding 2021; 12(4): 1461-1465.
  • Erbil E. Determining the adaptability and exploring the potential of some soybean [Glycine max (L.) Merr.] varieties advance lines under the climatic conditions of South-Eastern Region of Turkey. Legume Research-An International Journal 2021; 44(8): 906-910.
  • Ergin N., Kızıl Aydemir S. Importance of soybean plant on animal nutrition. International Journal of Eastern Mediterranean Agricultural Research 2018; 1(1): 143-157 (in Turkish).
  • Ghanbari S., Nooshkam A., Fakheri BA., Mahdinezhad N. Assessment of yield and yield component of soybean genotypes (Glycine max L.) in north of Khuzestan. Journal of Crop Science and Biotechnology 2018; 21(5): 435-441.
  • Goonde DB., Ayana NG. Genetic diversity and character association for yield and yield related traits in soybean (Glycine max L.) genotypes. Journal of Agriculture and Food Research 2021; 12(1): 280.
  • Guleria H., Kumar P., Jyoti B., Kumar A., Paliwal A., Paliwal A. Genetic variability and correlation analysis in soybean (Glycine max (L.) Merrill) genotypes. International Journal of Chemical Studies 2019; 7(1): 1928-1932.
  • Jain RK., Joshi A., Chaudhary HR., Dashora A., Khatik CL. Study on genetic variability, heritability and genetic advance in soybean [Glycine max (L.) merrill]. Legume Research-An International Journal 2018; 41(4): 532-536.
  • Johnson HW., Robinson HF., Comstock RE. Estimates of genetic and environmental variability in soybeans. Agronomy Journal 1955; 47(7): 314-318. Joseph AJ., Smith AS., Danny RE. International soybean variety experiment, tenth report of results. Internatinal Soybean Program INTSOY 1983; 28: 1-18.
  • Karyawati AS., Puspitaningrum ESV. Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean. Biodiversitas Journal of Biological Diversity 2021; 22(3): 1146-1151.
  • Kızıl Aydemir S. Farklı ekim oranlarının mısır-soyanın birlikte üretiminin bazı agronomik ve verim özellikleri üzerine etkisi. Iğdır University Journal of the Institute of Science and Technology 2018; 8(3): 305-311.
  • Kuswantoro H. Effect of planting dates on growth, yield, and phenology of different soybean lines grown under tidal swamp land. Pertanika Journal of Tropical Agricultural Science 2018; 41(3): 1261-1274.
  • Kuswantoro H., Adie MM., Putri PH. Genetic variability, heritability, and genotypic correlation of soybean agronomic characters. Buletin Palawija 2021; 19(2): 117-125.
  • Kutlu HR. Kanatlı hayvan besleme (teorik temel-pratik uygulama) ders notu. 2008. https://silo.tips/download/kanatli-hayvan-besleme-teorik-temel-pratik-uygulama-5 (Erişim tarihi: 30.12.2021)
  • Kutlu HR. Tüm yönleriyle silaj yapımı ve silajla besleme. 2010. http://www.zootekni.org.tr/upload/file/silaj%20el%20ktabi.pdf (Erişim tarihi: 30.12.2021)
  • Lush JL. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science 1940; 1940(1): 293-301.
  • Malek MA., Rafii MY., Afroz MSS., Nath UK., Mondal MMA. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. The Scientific World Journal 2014; 968796.
  • Malik MFA., Qureshi AS., Ashraf M., Ghafoor A. Genetic variability of the main yield related characters in soybean. International Journal of Agriculture and Biology 2006; 8(6): 815-819.
  • Manivannan N. TNAUSTAT-Statistical package. Retrived from https://sites.google.com/site/tnaustat, 2014.
  • Mehra S., Shrivastava MK., Amrate PK., Yadav RB. Studies on variability, correlation coefficient and path analysis for yield associated traits in soybean [Glycine max (L.) Merrill]. Journal of Oilseeds Research 2020; 37(1): 56-59.
  • Mesfin HH. Path analysis, genetic variability and correlation studies for soybean (Glycine max (L.) Merill) for grain yield and secondary traits at Asosa, Western Ethiopia. Greener Journal of Plant Breeding Crop Science 2018; 6(3): 35-46.
  • Nazlıcan AN. Soya yetiştiriciliği. 2010. https://arastirma.tarimorman.gov.tr/cukurovataem/Belgeler/Yeti%C5%9Ftiricilik/soya-yetistiriciligi_1.pdf (Erişim Tarihi:30.12.2021)
  • Neelima G., Mehtre SP., Narkhede GW. Genetic variability, heritability and genetic advance in soybean. International Journal of Pure & Applied Bioscience 2018; 6(2): 1011-1017.
  • Rasaily SK., Desai ND., Kukadia MU. Genetic variability in soybean (Glycine max L. Merrill). Gujarat Agricultural University Research Journal 1986; 11(2): 57-60.
  • Reni YP., Rao YK. Genetic variability in soybean [Glycine max (L) merrill]. International Journal of Plant, Animal and Environmental Sciences 2013; 3(4): 35-38.
  • Robinson HF. Quantitative genetics in relation to breeding on centennial of Mendelism. Indian Journal of Genetics and Plant Breeding 1966; 26(1): 171-87.
  • Sirtioglu I. Oilseeds and products annual - Turkey. USDA Foreign Agricultural Service-Global Agricultural Information Network, 2019; GAIN Report Number: TR9004.
  • Sivasubramanian V., Madhavamenon P. Path analysis for yield and yield components of rice. Madras Agricultural Journal 1973; 60: 1217-1221.
  • Urdă C., Suciu V., Rusu T., Păcurar L., Rezi R., Tritean N., Russu F., Negrea A., Galben RD., Duda MM. Variability and heritability of some agronomical and quality characters of soybean (Glycine max (L.) Merr.) cultivars. Life Science and Sustainable Development 2021; 2(2): 120-126.
  • Vaidya P. Genetic variability and correlation analysis in soybean (Glycine max (L.) Merrill) genotypes. International Journal of Chemical Studies 2019; 7(1): 1928-1932.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLES
Authors

Hatice Hızlı 0000-0002-5451-1397

Pınar Çubukçu This is me 0000-0001-8949-0832

Ahmet Korhan Şahar 0000-0003-2690-9821

Project Number TAGEM/ TBAD/B/20/A7/P4/1649
Publication Date July 5, 2023
Submission Date January 18, 2023
Acceptance Date April 6, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Hızlı, H., Çubukçu, P., & Şahar, A. K. (2023). Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill). Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1513-1528. https://doi.org/10.47495/okufbed.1238616
AMA Hızlı H, Çubukçu P, Şahar AK. Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill). Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2023;6(2):1513-1528. doi:10.47495/okufbed.1238616
Chicago Hızlı, Hatice, Pınar Çubukçu, and Ahmet Korhan Şahar. “Path Analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine Max (L.) Merill)”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1513-28. https://doi.org/10.47495/okufbed.1238616.
EndNote Hızlı H, Çubukçu P, Şahar AK (July 1, 2023) Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill). Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1513–1528.
IEEE H. Hızlı, P. Çubukçu, and A. K. Şahar, “Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill)”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 2, pp. 1513–1528, 2023, doi: 10.47495/okufbed.1238616.
ISNAD Hızlı, Hatice et al. “Path Analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine Max (L.) Merill)”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1513-1528. https://doi.org/10.47495/okufbed.1238616.
JAMA Hızlı H, Çubukçu P, Şahar AK. Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill). Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:1513–1528.
MLA Hızlı, Hatice et al. “Path Analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine Max (L.) Merill)”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1513-28, doi:10.47495/okufbed.1238616.
Vancouver Hızlı H, Çubukçu P, Şahar AK. Path analysis, Genetic Variability and Correlation Studies of Related Characters for Forage Soybean (Glycine max (L.) Merill). Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(2):1513-28.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.