Bu çalışmada tekil Beta-Sturm-Liouville operatörü
Ω(y) = −Tβ( f (t) Tβ y(t)) + g(t)y(t) on [0,∞)
ele alınmıştır. Bu operatör için Weyl'in sınır noktası sınıflandırmasına yönelik bir kriter verilmiştir. Bu amaçla öncelikle beta hesabının temel kavramları ve bazı teoremler verilmiştir. Everit yöntemi (1966) kullanılarak Beta-Sturm-Liouville denkleminin sınır noktası durumunda hangi koşullar altında olacağı gösterilmiştir.
Sınır nokyası durumu Tekil Sturm-Liouville operatörü beta-Sturm-Liouville problemi sınır noktası sınırlandırması
The singular Beta-Sturm-Liouville operator
Ω(y) = −Tβ( f (t) Tβ y(t)) + g(t)y(t) on [0,∞)
is taken into consideration in this study. A criterion for Weyl's limit-point classification is given for this operator. For this purpose, firstly the basic concepts of beta calculation and some theorems are given. Using Everit's method (1966), it is shown under what conditions the Beta-Sturm-Liouville equation will be in its limit-point case.
Limit-point case singular Sturm-Liouville operator beta-Sturm-Liouville problem limit-point classification
Primary Language | Turkish |
---|---|
Subjects | Mathematical Methods and Special Functions |
Journal Section | RESEARCH ARTICLES |
Authors | |
Early Pub Date | January 15, 2025 |
Publication Date | January 17, 2025 |
Submission Date | March 24, 2024 |
Acceptance Date | July 22, 2024 |
Published in Issue | Year 2025 Volume: 8 Issue: 1 |
*This journal is an international refereed journal
*Our journal does not charge any article processing fees over publication process.
* This journal is online publishes 5 issues per year (January, March, June, September, December)
*This journal published in Turkish and English as open access.
* This work is licensed under a Creative Commons Attribution 4.0 International License.