Research Article
BibTex RIS Cite

Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması

Year 2025, Volume: 8 Issue: 1, 45 - 56, 17.01.2025
https://doi.org/10.47495/okufbed.1458172

Abstract

Bu çalışmada tekil Beta-Sturm-Liouville operatörü

Ω(y) = −Tβ( f (t) Tβ y(t)) + g(t)y(t) on [0,∞)

ele alınmıştır. Bu operatör için Weyl'in sınır noktası sınıflandırmasına yönelik bir kriter verilmiştir. Bu amaçla öncelikle beta hesabının temel kavramları ve bazı teoremler verilmiştir. Everit yöntemi (1966) kullanılarak Beta-Sturm-Liouville denkleminin sınır noktası durumunda hangi koşullar altında olacağı gösterilmiştir.

References

  • Allahverdiev BP., Tuna H., and Yalçınkaya Y. Limit-point classification for singular conformable fractional Sturm-Liouville operators. Turk. J. Math. Comput. Sci., 2021; 13(1): 19-24. DOI : 10.47000/tjmcs.823766.
  • Atangana A. and Alqahtani RT. Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy, 2021; 18(2):40, 2-14. https://doi.org/10.3390/e18020040. (10.08.2023)
  • Atangana A., Baleanu D. and Alsaedi A. Analysis of time-fractional Hunter–Saxton equation: a model of neumatic liquid crystal. Open Phys., 2016; 14(1): 145-149.
  • Baskaya E. Asymptotics of eigenvalues for Sturm-Liouville problem including eigenparameter-dependent boundary conditions with integrable potential. New Trends in Mathematical Sciences. 2018; 6(3).
  • Başkaya E. On the asymptotics of eigenvalues for a Sturm-Liouville problem with symmetric single-well potential. Demonstratio Mathematica, 2024; 57(1), 20230129.
  • Braeutigam IN. Limit-point criteria fort he matrix Sturm-Liouville operatör and its powers. Opuscula Mathematica, 2017; 37(1): 5-19.
  • Everitt WN. On the limit-point classification of second-order differential expressions. J. London Math. Soc., 1966; 41: 531-534.
  • Everitt, WN. On the limit-circle classification of second-order differential expressions. Quart. J. Math., (Oxford), 1972; 2(23): 193-196.
  • Fadhal E. Akbulut A., Kaplan M., Awadalla M. and Abuasbeh K. Extraction of exact solutions of higher order Sasa-Satsuma equation in the sense of beta derivative. Symmetry, 2022; 14(11).
  • Hardy GH., Littlewood JE. and Polya G. Inequalities. Cambridge University Press, New York, 1934.
  • Kabatas A. Sturm-Liouville Problems with Polynomially Eigenparameter Dependent Boundary Conditions. Sakarya University Journal of Science. 2023; 27(6), 1235-1242.
  • Levinson N. Criteria for the limit-point case for second-order linear differential operators. Pest. Mat. Phys., 1949; 74: 17-20.
  • Martinez YP., Gomez-Aguilar JF. and Baleanu D. Beta-derivative, and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik, 2018; 155:357-365.
  • Miller KS. and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley Interscience, New York, 1993.
  • Mirzoev KA. New limit-point cretiria for Sturm-Liouville operator. Proceeding of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 2014; 40(Special Issue):290-299.
  • Oldham KB. and Spainer J. The Fractional Calculus. Academic Press, New York, 1974.
  • Podlubny I. Fractional differential equations. Mathematics in Science and Engineering. vol. 198, Academic Press, New York, London, Tokyo and Toronto, 1999.
  • Ross B. Fractional Calculus and Its Applications. Springer, New York, 1975.
  • Titchmarsh EC. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition Clarendon Press, Oxford, 1962.
  • Zhang M., Sun J. and Zetll A. Eigenvalues of limit-point Sturm-Liouville. J. Math. Anal. Appl., 2014; 419:627-642.
  • Zhaowen Z., Huixin L., Jinming C. and Yanwei Z. Criteria of limit-point case for conformable fractional Sturm-Liouville operators. Math. Meth. Appl. Sci., 2020; 43: 2548–2557.

Classification of Sturm-Liouville Operators With Beta-Derivatives at the Limit-Point

Year 2025, Volume: 8 Issue: 1, 45 - 56, 17.01.2025
https://doi.org/10.47495/okufbed.1458172

Abstract

The singular Beta-Sturm-Liouville operator
Ω(y) = −Tβ( f (t) Tβ y(t)) + g(t)y(t) on [0,∞)
is taken into consideration in this study. A criterion for Weyl's limit-point classification is given for this operator. For this purpose, firstly the basic concepts of beta calculation and some theorems are given. Using Everit's method (1966), it is shown under what conditions the Beta-Sturm-Liouville equation will be in its limit-point case.

References

  • Allahverdiev BP., Tuna H., and Yalçınkaya Y. Limit-point classification for singular conformable fractional Sturm-Liouville operators. Turk. J. Math. Comput. Sci., 2021; 13(1): 19-24. DOI : 10.47000/tjmcs.823766.
  • Atangana A. and Alqahtani RT. Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy, 2021; 18(2):40, 2-14. https://doi.org/10.3390/e18020040. (10.08.2023)
  • Atangana A., Baleanu D. and Alsaedi A. Analysis of time-fractional Hunter–Saxton equation: a model of neumatic liquid crystal. Open Phys., 2016; 14(1): 145-149.
  • Baskaya E. Asymptotics of eigenvalues for Sturm-Liouville problem including eigenparameter-dependent boundary conditions with integrable potential. New Trends in Mathematical Sciences. 2018; 6(3).
  • Başkaya E. On the asymptotics of eigenvalues for a Sturm-Liouville problem with symmetric single-well potential. Demonstratio Mathematica, 2024; 57(1), 20230129.
  • Braeutigam IN. Limit-point criteria fort he matrix Sturm-Liouville operatör and its powers. Opuscula Mathematica, 2017; 37(1): 5-19.
  • Everitt WN. On the limit-point classification of second-order differential expressions. J. London Math. Soc., 1966; 41: 531-534.
  • Everitt, WN. On the limit-circle classification of second-order differential expressions. Quart. J. Math., (Oxford), 1972; 2(23): 193-196.
  • Fadhal E. Akbulut A., Kaplan M., Awadalla M. and Abuasbeh K. Extraction of exact solutions of higher order Sasa-Satsuma equation in the sense of beta derivative. Symmetry, 2022; 14(11).
  • Hardy GH., Littlewood JE. and Polya G. Inequalities. Cambridge University Press, New York, 1934.
  • Kabatas A. Sturm-Liouville Problems with Polynomially Eigenparameter Dependent Boundary Conditions. Sakarya University Journal of Science. 2023; 27(6), 1235-1242.
  • Levinson N. Criteria for the limit-point case for second-order linear differential operators. Pest. Mat. Phys., 1949; 74: 17-20.
  • Martinez YP., Gomez-Aguilar JF. and Baleanu D. Beta-derivative, and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik, 2018; 155:357-365.
  • Miller KS. and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley Interscience, New York, 1993.
  • Mirzoev KA. New limit-point cretiria for Sturm-Liouville operator. Proceeding of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 2014; 40(Special Issue):290-299.
  • Oldham KB. and Spainer J. The Fractional Calculus. Academic Press, New York, 1974.
  • Podlubny I. Fractional differential equations. Mathematics in Science and Engineering. vol. 198, Academic Press, New York, London, Tokyo and Toronto, 1999.
  • Ross B. Fractional Calculus and Its Applications. Springer, New York, 1975.
  • Titchmarsh EC. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition Clarendon Press, Oxford, 1962.
  • Zhang M., Sun J. and Zetll A. Eigenvalues of limit-point Sturm-Liouville. J. Math. Anal. Appl., 2014; 419:627-642.
  • Zhaowen Z., Huixin L., Jinming C. and Yanwei Z. Criteria of limit-point case for conformable fractional Sturm-Liouville operators. Math. Meth. Appl. Sci., 2020; 43: 2548–2557.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Methods and Special Functions
Journal Section RESEARCH ARTICLES
Authors

Yüksel Yalçınkaya 0000-0002-1633-8343

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date March 24, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Yalçınkaya, Y. (2025). Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 45-56. https://doi.org/10.47495/okufbed.1458172
AMA Yalçınkaya Y. Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):45-56. doi:10.47495/okufbed.1458172
Chicago Yalçınkaya, Yüksel. “Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 45-56. https://doi.org/10.47495/okufbed.1458172.
EndNote Yalçınkaya Y (January 1, 2025) Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 45–56.
IEEE Y. Yalçınkaya, “Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 45–56, 2025, doi: 10.47495/okufbed.1458172.
ISNAD Yalçınkaya, Yüksel. “Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 45-56. https://doi.org/10.47495/okufbed.1458172.
JAMA Yalçınkaya Y. Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:45–56.
MLA Yalçınkaya, Yüksel. “Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 45-56, doi:10.47495/okufbed.1458172.
Vancouver Yalçınkaya Y. Sınır noktasında Beta Türevli Sturm-Liouville Operatörlerinin Sınıflandırılması. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):45-56.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.