ANALYTICAL INVESTIGATION OF SOIL DEFORMATION AND STRAIN ACCORDING TO RHEOLOGY EQUATION
Year 2014,
Volume: 29 Issue: 1, 79 - 85, 05.02.2014
İmanverdi Ekberli
,
Coşkun Gulser
,
Nutullah Özdemir
Abstract
Relaxation processes of soils are related with deformation and strain properties of soils. Deformation and strain status of soils affect agricultural practices significantly. In this study, soil deformation and strain was investigated theoretically according to basic rheology equation. In case of harmonic and linear variability of initial deformation which causes relaxation process in soil, soil strain was determined using solution of basic rheology equation with respect to time. Relationships for soil deformation were obtained in harmonic and linear variability conditions of initial strain causing shear process. Time dependent soil deformation occurred with external load, changes linearly with soil physical properties such as moisture, bulk density, and linear and angular deformation velocities of agricultural machinery and equipments.
References
- Alemdar A., 200 Bentonit ve Montmorillonit Dirpersiyonlarının Reolojik Viskoelastik, Kolloidal Özellikleri Üzerine Organik ve İnorganik Tuzların Etkisi. İstanbul Teknik Üniversitesi, Doktora Tezi, 111 s., İstanbul. Barnes, H.A., Hutten, J.F., Walters, K., 1989. An Introduction to Rheology, Rheology Series-3. Elsevier Science, Amsterdam.
- Cıtovic, H.A., 1983. Mehanika gtuntov (kratkiy kurs). Vysşaya Şkola, 288 s.
- Denisov, N.Ya., 1951. The engineering properties of loess and loess-like soils (in Russian). Moscow, Press Gosstroiizdat, 133 p.
- Ekberli, İ., Gülser, C., Özdemir, N., Selvi, K.Ç., 2012. Mathematical Evaluation of Soil Stress in Erosion. Process. 8 th International Soil Science Congress on Land Degradation and Challenges in Sustainable Soil Management. May 15-17, 2012. Çeşme-İzmir/Turkey. Volume IV, pp. 434-439.
- Habatov,R.Ş., Zolotarevskaya, D.İ., Matveyev V.V., Truşin, V.G., Truşin, G.A., Lyadin, V.P., 19 Zakonomernosti deformirovaniya traktornıh koles s pnevmaticeskimi şinami. İzvestiya TSHA, 3: 173-180. Jiang, Q., 1996. Study on rheological properties and mass transport of soft mud under water waves. Ph.D. Thesis, University of Tokyo, Japan.
- Koltunov, M.A., Kravchuk, A.S., Majboroda, V.P., 1983. Applied Mechanics of Deformable Solid Body, Vysshaja Shkola, Moscow, 349 p.
- Koltunov M.A., Kravchuk, A.C., 1973. Mehanika deformiruyemih sred. Moskova, İzdatelstvo MİEM, 162 s.
- Qi, P., Hou, Y.J., 2006. Mud mass transport due to waves based on an empirical rheology model featured by hysteresis loop. Ocean Engineering, 33: 2195–2208.
- Shibayama, T., Okuno, M., Sato, S., 1990. Mud transport rate in mud layer due to wave action. In: Proceedings of the 22nd Conference on Coastal Engineering, ASCE, pp. 3037–3048. Selivanov, V.V., 19 Mehanika razruşeniya deformiryemogo tela (Prikladnaya mehanika sploşnıh sred, T.2). İzdatelstvo MGTU im. H.E. Baumana, 420 s.
- Şein, Y.V., Karpaçevskiy, L.O., 2007. Teori i metodı fiziki poçv (in Russian). "Grif i K" Publishing House, Tula, 614 p (464-530 pp).
- Trien, H. N., 1991. Study on mud transport in coastal waters. Ph.D. Thesis, University of Tokyo, Japan.
- Tsytovich, N.A., 1983. Soil mechanics (in Russian).
- Vysshaya Shkola Publishing House, Moscow, 288 p. Turcotte, D.L., Schubert, G., 1985. Geodynamics.
- Applications of Continuum Physics to Geological Problems, Volume 2 (pp. 488-573). Moskow, Press Mir. Ün, H., 2007. http://hun.pamukkale. edu.tr/ders_notlari/ malzeme_bilgisi/Malzeme_ders_6_Reoloji.pdf. Erisim Tarihi: 15.03.2009.
- Vyalov, S.S., 1978. Reologiçeskiye osnovı mekaniki gruntov. Moskova, Vysşaya Şkola, 447 s.
- Vyalov, S.S., 1986. Rheological Fundamentals of Soil
- Mechanics. Elsevier, Amsterdam. Zolotarevskaya, D.I., 19 Zakonomernosti deformirovaniya poçv i ix matematiçeskoye modelirovaniye. Pocvovedeniye, 1: 110-120. Zolotarevskaya, D.I., 2003a. Mathematical modeling of relaxation processes in soils. Pocvovedeniye, 4: 4294
- Zolotarevskaya D.I., 2003b. Mathematical modeling of the processes of deformation of soils with time. Journal of
- Engineering Physics and Thermophysics, 76(3): 6326
- Zolotarevskaya, D.I., 2007. Mathematical Modeling of the Processes of Soil Deformation and Soil Compaction. Pocvovedeniye, 1: 44-54.
TOPRAK DEFORMASYONU VE GERİLİMİNİN REOLOJİ DENKLEMİNE GÖRE ANALİTİK İNCELENMESİ
Year 2014,
Volume: 29 Issue: 1, 79 - 85, 05.02.2014
İmanverdi Ekberli
,
Coşkun Gulser
,
Nutullah Özdemir
Abstract
Toprakların gevşeme süreçleri toprağın deformasyon ve gerilim özellikleri ile ilişkilidir. Toprakların deformasyon ve gerilim durumu tarımsal faaliyetleri önemli düzeyde etkilemektedir. Bu çalışmada temel reoloji denklemine göre toprağın deformasyon ve gerilimi teorik olarak incelenmiştir. Toprakta gevşeme sürecine neden olan başlangıç deformasyonun harmonik ve doğrusal değişim durumlarında temel reoloji denkleminin çözümü kullanılarak zamana bağlı toprak gerilimi t belirlenmiştir. Kayma sürecini oluşturan başlangıç geriliminin harmonik ve doğrusal değişim koşullarında ise toprak deformasyonunu t gösteren ilişkiler elde edilmiştir. Toprağa uygulanan dış yükün etkisi altında zamana bağlı oluşan deformasyon, toprak nemi, hacim ağırlığı gibi toprağın fiziksel özellikleri, tarım alet ve makinelerinden oluşan doğrusal ve açısal deformasyon hızlarıyla doğru orantılı olarak değişmektedir.
References
- Alemdar A., 200 Bentonit ve Montmorillonit Dirpersiyonlarının Reolojik Viskoelastik, Kolloidal Özellikleri Üzerine Organik ve İnorganik Tuzların Etkisi. İstanbul Teknik Üniversitesi, Doktora Tezi, 111 s., İstanbul. Barnes, H.A., Hutten, J.F., Walters, K., 1989. An Introduction to Rheology, Rheology Series-3. Elsevier Science, Amsterdam.
- Cıtovic, H.A., 1983. Mehanika gtuntov (kratkiy kurs). Vysşaya Şkola, 288 s.
- Denisov, N.Ya., 1951. The engineering properties of loess and loess-like soils (in Russian). Moscow, Press Gosstroiizdat, 133 p.
- Ekberli, İ., Gülser, C., Özdemir, N., Selvi, K.Ç., 2012. Mathematical Evaluation of Soil Stress in Erosion. Process. 8 th International Soil Science Congress on Land Degradation and Challenges in Sustainable Soil Management. May 15-17, 2012. Çeşme-İzmir/Turkey. Volume IV, pp. 434-439.
- Habatov,R.Ş., Zolotarevskaya, D.İ., Matveyev V.V., Truşin, V.G., Truşin, G.A., Lyadin, V.P., 19 Zakonomernosti deformirovaniya traktornıh koles s pnevmaticeskimi şinami. İzvestiya TSHA, 3: 173-180. Jiang, Q., 1996. Study on rheological properties and mass transport of soft mud under water waves. Ph.D. Thesis, University of Tokyo, Japan.
- Koltunov, M.A., Kravchuk, A.S., Majboroda, V.P., 1983. Applied Mechanics of Deformable Solid Body, Vysshaja Shkola, Moscow, 349 p.
- Koltunov M.A., Kravchuk, A.C., 1973. Mehanika deformiruyemih sred. Moskova, İzdatelstvo MİEM, 162 s.
- Qi, P., Hou, Y.J., 2006. Mud mass transport due to waves based on an empirical rheology model featured by hysteresis loop. Ocean Engineering, 33: 2195–2208.
- Shibayama, T., Okuno, M., Sato, S., 1990. Mud transport rate in mud layer due to wave action. In: Proceedings of the 22nd Conference on Coastal Engineering, ASCE, pp. 3037–3048. Selivanov, V.V., 19 Mehanika razruşeniya deformiryemogo tela (Prikladnaya mehanika sploşnıh sred, T.2). İzdatelstvo MGTU im. H.E. Baumana, 420 s.
- Şein, Y.V., Karpaçevskiy, L.O., 2007. Teori i metodı fiziki poçv (in Russian). "Grif i K" Publishing House, Tula, 614 p (464-530 pp).
- Trien, H. N., 1991. Study on mud transport in coastal waters. Ph.D. Thesis, University of Tokyo, Japan.
- Tsytovich, N.A., 1983. Soil mechanics (in Russian).
- Vysshaya Shkola Publishing House, Moscow, 288 p. Turcotte, D.L., Schubert, G., 1985. Geodynamics.
- Applications of Continuum Physics to Geological Problems, Volume 2 (pp. 488-573). Moskow, Press Mir. Ün, H., 2007. http://hun.pamukkale. edu.tr/ders_notlari/ malzeme_bilgisi/Malzeme_ders_6_Reoloji.pdf. Erisim Tarihi: 15.03.2009.
- Vyalov, S.S., 1978. Reologiçeskiye osnovı mekaniki gruntov. Moskova, Vysşaya Şkola, 447 s.
- Vyalov, S.S., 1986. Rheological Fundamentals of Soil
- Mechanics. Elsevier, Amsterdam. Zolotarevskaya, D.I., 19 Zakonomernosti deformirovaniya poçv i ix matematiçeskoye modelirovaniye. Pocvovedeniye, 1: 110-120. Zolotarevskaya, D.I., 2003a. Mathematical modeling of relaxation processes in soils. Pocvovedeniye, 4: 4294
- Zolotarevskaya D.I., 2003b. Mathematical modeling of the processes of deformation of soils with time. Journal of
- Engineering Physics and Thermophysics, 76(3): 6326
- Zolotarevskaya, D.I., 2007. Mathematical Modeling of the Processes of Soil Deformation and Soil Compaction. Pocvovedeniye, 1: 44-54.