Research Article
BibTex RIS Cite

Effects of soil tillage systems on aggregate-associated total carbon and nitrogen contents under Çukurova conditions

Year 2017, Volume: 32 Issue: 3, 383 - 390, 15.10.2017
https://doi.org/10.7161/omuanajas.289801

Abstract

The effect of six different tillage methods under
long-term (2006-2014) wheat-maize and wheat-soy rotations on
aggregate-assosicated total carbon and nitrogen content in two different depths
(0-15, 15-30 cm) were studied under Çukurova conditions in approximately 50 %
clay containing soil. The tillage systems consisted of conventional tillage
with stubble (CT-1), conventional tillage with stubbles burned (CT-2), heavy
disc harrow reduced tillage (RT-1), rototiller reduced tillage (RT-2), reduced
tillage with heavy tandem disc harrow fallowed by no-tillage (RNT), and no-till
(NT). Each tillage method applied at 480 m2 plot and replicated
three times in randomly distributed plots.
Aggregate-associated
total C contents
in 0-15 cm depth were obtained higher in
conservation tillage treatments compared to traditional tillage techniques at
all aggregate sizes (>4.0 mm, 4.0-2.0 mm, 2.0-1.0 mm and 1.0-0.5 mm).
Aggregate-associated
total C values under conservation tillage methods decreased with increasing
soil depth.
In both depths (0-15, 15-30 cm) and at all
aggregate sizes the highest total nitrogen concentration values were determined
in RT-1 tillage treatment. Significant enhancements of total carbon bounding in
aggregates were observed in conservation tillage methods compared to
traditional tillage methods. Except for RT-1 in other conservation tillage
methods (NT, RNT and RT-2)
total nitrogen values were lower compared to
conventional tillage methods.

References

  • Abid, M., Lal, R., 2008. Tillage and drainage impact on soil quality I. Aggregate stability, carbon and nitrogen pools. Soil and Tillage Research, 100: 89–98.
  • Alvarez, R., Russo, M.E., Prystupa, P., Scheiner, J.D., Blotta, L., 1998. Soil carbon pools under conventional and no-tillage systems in the Argentine Rolling Pampa. Agronomy Journal, 90: 138–143.
  • Alvarez, C., Alvarez, C.R., Costantini, A., Basanta, M., 2014. Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142: 25–31.
  • Andruschkewitsch, R., Geisseler, D., Koch, H., Ludwig, B., 2013. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma, 192: 368–377.
  • Barbera, V., Poma, I., Gristina, L., Novara, A., Egli, M., 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degradation and Development, 23: 82–91.
  • Bhattacharyya, B., Prakash, V., Kundu, S., Srivastva, A.K., Gupta, H.S., 2009. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas uder different tillage and crop regimes. Agriculture, Ecosystems and Environment, 132: 126–134.
  • Blanco-Canqui, H., Lal, R., 2006. Tensile Strength of Aggregates. Encyclopedia of Soil Science, vol. 45–48. The Ohio State University, Columbus, OH, USA.
  • Blume, H.P., Brümmer, G.W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.M., 2010. Scheffer/Schachtschabel. Lehrbuch der Bodenkunde.
  • Cannell, R.Q., Hawes, J.D., 1994. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil and Tillage Research, 30: 245-282.
  • Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52: 345–353.
  • Costantini, A., De-Polli, H., Galarza, C., Rossiello, R.P., Romaniuk, R., 2006. Total and mineralizable soil carbon as affect by tillage in the Argentinean Pampas. Soil and Tillage Research, 88: 274–278.
  • Çelik, İ., Ortaş, İ., Bereket Barut, Z., Gök, M., Sarıyev, A., Demirbaş, A., Akpınar, Ç., Tülün, Y. 2009. Farklı Toprak İşleme Sistemlerinin Toprak Kalitesi Parametrelerine ve Ürün Verimine Etkileri. TÜBİTAK-TOVAK, Araştırma projesi Sonuç Raporu.
  • Dexter, A.R., 1988. Advances in characterization of soil structure. Soil and Tillage Research, 11: 199-238.
  • Du, Z., Ren, T., Hu, C., 2010. Tillage and residue removal – effects on soil carbon and nitrogen storage in the North China Plain. Soil Science Society of America Journal, 74(1): 196–202.
  • Gal, A., Vyn, T.J., Micheli, E., Kladivko, E.J., McFee, W.W., 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil and Tillage Research, 96: 42-51.
  • Gülez, M., Şenol, S., 2002. Çukurova Üniversitesi Ziraat Fakültesi Toprak Bölümü Deneme Alanının Detaylı Toprak Etüd ve Haritalaması. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 17: 103-110.
  • Hao, X., Chang, C., Lindwall, C.W., 2001. Tillage and crop sequence effects on organic carbon and total nitrogen content in an irrigated Alberta soil. Soil and Tillage Research, 62: 167-169.
  • Havlin, J.L., Kissel, D.E., Maddux, L.D., Claassen, M.M., Long, J.H., 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of America Journal, 54: 448–452.
  • Heenan, D.P., Chan, K.Y., Knight, P.G., 2004. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol. Soil and Tillage Research, 76: 59–68.
  • Hou, X., Li, R., Jia, Z., Han, Q., 2013. Effect of Rotational Tillage on Soil Aggregates, Organic Carbon and Nitrogen in the Loess Plateau Area of China. Pedosphere, 23: 542–548.
  • Huang, M., Liang, T., Wang, L., Zhou, C., 2015. Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat–maize double cropping system. Catena, 128: 195–202.
  • Islam, K.R., Weil, R.R., 2000. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79(1): 9-16.
  • Jacobs, A., Rauber, R., Ludwig, B., 2009. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil and Tillage Research, 102: 158–164.
  • Jiang, X., Wright, A.L., Wang, J., Li, Z., 2011. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena, 87: 276-280.
  • Kabiri, V., Raiesi, F., Ghazavi, M.A., 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil and Tillage Research, 154: 114–125.
  • Kahlon, M.S., Lal, R., Ann-Varughese, M., 2013. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research, 126: 151–158.
  • Kasper, M., Buchan, G.D., Mentler, A., Blum, W.E.H., 2009. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil and Tillage Research, 105: 192–199.
  • Koller, K., 2003. Conservation tillage-Technical, ecological and economic aspects. Koruyucu Toprak işleme ve Doğrudan Ekim Çalıştayı. 23-24 Ekim 2003. Ege Üniversitesi Ziraat Fakültesi Tarım Makinaları Bölümü, Bornova, İzmir, s, 9-34.
  • Kushwaha, C.P., Tripathi, S.K., Singh, K.P., 2001. Soil organic matter and water stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology, 16: 229–241.
  • Kutilex, M., 2004. Soil hydraulic properties as related to soil structure. Soil and Tillage Research, 79, 175-184.
  • Lal, R., 1998. Methods for assessment of soil degradation. In: Advances in Soil Science. CRP press, Boca Raton, FL.
  • Nardi, S., Cocheri, G., Dell Agnola, G., 1996. Biological activity of humus. In: Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, pp. 361-406.
  • Pagliai, M., Vignozzi, N., Pellegrini, S., 2004. Soil structure and the effect of management practices. Soil and Tillage Research, 79: 131-143.
  • Paustian, K., Collins, H.P., Paul, E.A., 1997. Management controls on soil carbon. In: Paul, E.A., et al. (Eds.), Soil Organic Matter in Temperate Agroecosystems, Longterm Experiments in North America. CRC Press, Boca Raton, FL, USA, pp. 15–49.
  • Pinheiro, E.F.M., Pereira, M.G., Anjos, L.H.C., 2004. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research, 77: 79–84.
  • Rasmussen, P.E., Albrecht, S.L., Smiley, R.W., 1998. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil and Tillage Research, 47: 197-205.
  • Resck, D.V.S., Vasconcellos, C.A., Vilela, L., Macedo, M.C.M., 1999. Impact of conversion of Brazilian Cerrados to cropland and pasture land on soil carbon pool and dynamics. In: Lal, R., Kimble, J.M., Stewart, B.A. (Eds.), Global Climate Change and Tropical Ecosystems. Adv. Soil Sci. CRC Press, Boca Raton, FL, pp. 169–196.
  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H., 1993. Toprak Bilimi. P. Schachtschabel, H.-P. Blume, G. Brummer, K.-H. Hartge, U. Schwertmann (Çeviri). Ç.Ü. Zir. Fak. Ders Kitapları Yay. No: 16.
  • Sisti, C.P.J., Dos Santos, H.P., Kohhann, R., Alves, B.J.R., Urquiaga, S., Boddey, R.M., 2004. Changes in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, 76: 39–58.
  • Six, J., Elliott, E.T., Paustian, K., 2000. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biology and Biochemistry, 32(14): 2099-2103.
  • Soil Survey Staff, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edition. Agriculture Handbook, vol. 435.USDA, NRCS., US Government Printing Office, Washington DC.
  • Steinbach, H.S., Alvarez, R., 2006. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. Journal of Environmental Quality, 35: 3–13.
  • Torbert, H.A., Potter, K.N., Morrison Jr, J.E., 1998. Tillage intensity and crop residue effects on nitrogen and carbon cycling in a Vertisol. Communications in Soil Science and Plant Analysis, 29(5-6): 717-727.
  • Unger, P.W., McCalla, T.M., 1980. Conservation tillage systems. Advances in Agronomy 33, 1-58.
  • Xue, J., Pu, C., Liu, S., Chen, Z., Chen, F., Xiao, X., LaL, R., Zhang, H., 2015. Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China. Soil and Tillage Research, 153: 161–168.

Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri

Year 2017, Volume: 32 Issue: 3, 383 - 390, 15.10.2017
https://doi.org/10.7161/omuanajas.289801

Abstract

Çukurova koşullarında yaklaşık % 50
oranında kil içeren bir toprakta uzun süreli (2006-2014) buğday-mısır ve
buğday-soya rotasyonu altında altı farklı toprak işleme yönteminin iki farklı
derinlikte (0-15 ve 15-30 cm) agregatlara bağlı toplam karbon ve azot içeriğine
etkileri araştırılmıştır. Toprak işleme uygulamaları olarak; Anızlı geleneksel
toprak işleme (Gİ–1), Anızları yakılmış geleneksel toprak işleme (Gİ–2), Ağır
diskli tırmıklı azaltılmış toprak işleme (ATİ–1), Rototillerli azaltılmış
toprak işleme (ATİ–2), Ağır diskli tırmıklı azaltılmış sıfır toprak işleme
(ASTİ) ve Doğrudan ekimli sıfır toprak işleme (STİ) yöntemleri kullanılmıştır.
Her bir işleme yöntemi 480 m2’lik alana uygulanmakta ve 3 tekerrürlü
tesadüf parselinden oluşmaktadır. 0-15 cm derinlikte bütün agregat boyutlarında
(>4.0 mm, 4.0-2.0 mm, 2.0-1.0 mm ve 1.0-0.5 mm) toplam karbon değerleri
geleneksel işleme yöntemlerine kıyasla korumalı işleme uygulamaları altında
daha yüksek değerler elde edilmiştir. Derinlikteki artışla birlikte korumalı
işleme yöntemleri altındaki agregatlarda bulunan toplam karbon değerleri azalmıştır.
Her iki derinlikte (0-15 cm ve 15-30 cm) ve bütün agregat boyutlarında (>4.0
mm, 4.0-2.0 mm, 2.0-1.0 mm ve 1.0-0.5 mm) en yüksek toplam azot değerleri ATİ-1
işleme yöntemi altında belirlenmiştir. Korumalı işleme yöntemleri, geleneksel
işleme yöntemlerine kıyasla agregatlar içerisinde toplam karbonun bağlanmasında
önemli iyileşmeler sağladığı belirlenmiştir. ATİ-1 hariç diğer korumalı işleme
yöntemlerinde (STİ, ASTİ ve ATİ-2) geleneksel işlemelere göre daha düşük toplam
azot değerleri belirlenmiştir. 

References

  • Abid, M., Lal, R., 2008. Tillage and drainage impact on soil quality I. Aggregate stability, carbon and nitrogen pools. Soil and Tillage Research, 100: 89–98.
  • Alvarez, R., Russo, M.E., Prystupa, P., Scheiner, J.D., Blotta, L., 1998. Soil carbon pools under conventional and no-tillage systems in the Argentine Rolling Pampa. Agronomy Journal, 90: 138–143.
  • Alvarez, C., Alvarez, C.R., Costantini, A., Basanta, M., 2014. Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142: 25–31.
  • Andruschkewitsch, R., Geisseler, D., Koch, H., Ludwig, B., 2013. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma, 192: 368–377.
  • Barbera, V., Poma, I., Gristina, L., Novara, A., Egli, M., 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degradation and Development, 23: 82–91.
  • Bhattacharyya, B., Prakash, V., Kundu, S., Srivastva, A.K., Gupta, H.S., 2009. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas uder different tillage and crop regimes. Agriculture, Ecosystems and Environment, 132: 126–134.
  • Blanco-Canqui, H., Lal, R., 2006. Tensile Strength of Aggregates. Encyclopedia of Soil Science, vol. 45–48. The Ohio State University, Columbus, OH, USA.
  • Blume, H.P., Brümmer, G.W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.M., 2010. Scheffer/Schachtschabel. Lehrbuch der Bodenkunde.
  • Cannell, R.Q., Hawes, J.D., 1994. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil and Tillage Research, 30: 245-282.
  • Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52: 345–353.
  • Costantini, A., De-Polli, H., Galarza, C., Rossiello, R.P., Romaniuk, R., 2006. Total and mineralizable soil carbon as affect by tillage in the Argentinean Pampas. Soil and Tillage Research, 88: 274–278.
  • Çelik, İ., Ortaş, İ., Bereket Barut, Z., Gök, M., Sarıyev, A., Demirbaş, A., Akpınar, Ç., Tülün, Y. 2009. Farklı Toprak İşleme Sistemlerinin Toprak Kalitesi Parametrelerine ve Ürün Verimine Etkileri. TÜBİTAK-TOVAK, Araştırma projesi Sonuç Raporu.
  • Dexter, A.R., 1988. Advances in characterization of soil structure. Soil and Tillage Research, 11: 199-238.
  • Du, Z., Ren, T., Hu, C., 2010. Tillage and residue removal – effects on soil carbon and nitrogen storage in the North China Plain. Soil Science Society of America Journal, 74(1): 196–202.
  • Gal, A., Vyn, T.J., Micheli, E., Kladivko, E.J., McFee, W.W., 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil and Tillage Research, 96: 42-51.
  • Gülez, M., Şenol, S., 2002. Çukurova Üniversitesi Ziraat Fakültesi Toprak Bölümü Deneme Alanının Detaylı Toprak Etüd ve Haritalaması. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 17: 103-110.
  • Hao, X., Chang, C., Lindwall, C.W., 2001. Tillage and crop sequence effects on organic carbon and total nitrogen content in an irrigated Alberta soil. Soil and Tillage Research, 62: 167-169.
  • Havlin, J.L., Kissel, D.E., Maddux, L.D., Claassen, M.M., Long, J.H., 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of America Journal, 54: 448–452.
  • Heenan, D.P., Chan, K.Y., Knight, P.G., 2004. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol. Soil and Tillage Research, 76: 59–68.
  • Hou, X., Li, R., Jia, Z., Han, Q., 2013. Effect of Rotational Tillage on Soil Aggregates, Organic Carbon and Nitrogen in the Loess Plateau Area of China. Pedosphere, 23: 542–548.
  • Huang, M., Liang, T., Wang, L., Zhou, C., 2015. Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat–maize double cropping system. Catena, 128: 195–202.
  • Islam, K.R., Weil, R.R., 2000. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79(1): 9-16.
  • Jacobs, A., Rauber, R., Ludwig, B., 2009. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil and Tillage Research, 102: 158–164.
  • Jiang, X., Wright, A.L., Wang, J., Li, Z., 2011. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena, 87: 276-280.
  • Kabiri, V., Raiesi, F., Ghazavi, M.A., 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil and Tillage Research, 154: 114–125.
  • Kahlon, M.S., Lal, R., Ann-Varughese, M., 2013. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research, 126: 151–158.
  • Kasper, M., Buchan, G.D., Mentler, A., Blum, W.E.H., 2009. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil and Tillage Research, 105: 192–199.
  • Koller, K., 2003. Conservation tillage-Technical, ecological and economic aspects. Koruyucu Toprak işleme ve Doğrudan Ekim Çalıştayı. 23-24 Ekim 2003. Ege Üniversitesi Ziraat Fakültesi Tarım Makinaları Bölümü, Bornova, İzmir, s, 9-34.
  • Kushwaha, C.P., Tripathi, S.K., Singh, K.P., 2001. Soil organic matter and water stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology, 16: 229–241.
  • Kutilex, M., 2004. Soil hydraulic properties as related to soil structure. Soil and Tillage Research, 79, 175-184.
  • Lal, R., 1998. Methods for assessment of soil degradation. In: Advances in Soil Science. CRP press, Boca Raton, FL.
  • Nardi, S., Cocheri, G., Dell Agnola, G., 1996. Biological activity of humus. In: Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, pp. 361-406.
  • Pagliai, M., Vignozzi, N., Pellegrini, S., 2004. Soil structure and the effect of management practices. Soil and Tillage Research, 79: 131-143.
  • Paustian, K., Collins, H.P., Paul, E.A., 1997. Management controls on soil carbon. In: Paul, E.A., et al. (Eds.), Soil Organic Matter in Temperate Agroecosystems, Longterm Experiments in North America. CRC Press, Boca Raton, FL, USA, pp. 15–49.
  • Pinheiro, E.F.M., Pereira, M.G., Anjos, L.H.C., 2004. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research, 77: 79–84.
  • Rasmussen, P.E., Albrecht, S.L., Smiley, R.W., 1998. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil and Tillage Research, 47: 197-205.
  • Resck, D.V.S., Vasconcellos, C.A., Vilela, L., Macedo, M.C.M., 1999. Impact of conversion of Brazilian Cerrados to cropland and pasture land on soil carbon pool and dynamics. In: Lal, R., Kimble, J.M., Stewart, B.A. (Eds.), Global Climate Change and Tropical Ecosystems. Adv. Soil Sci. CRC Press, Boca Raton, FL, pp. 169–196.
  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H., 1993. Toprak Bilimi. P. Schachtschabel, H.-P. Blume, G. Brummer, K.-H. Hartge, U. Schwertmann (Çeviri). Ç.Ü. Zir. Fak. Ders Kitapları Yay. No: 16.
  • Sisti, C.P.J., Dos Santos, H.P., Kohhann, R., Alves, B.J.R., Urquiaga, S., Boddey, R.M., 2004. Changes in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, 76: 39–58.
  • Six, J., Elliott, E.T., Paustian, K., 2000. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biology and Biochemistry, 32(14): 2099-2103.
  • Soil Survey Staff, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edition. Agriculture Handbook, vol. 435.USDA, NRCS., US Government Printing Office, Washington DC.
  • Steinbach, H.S., Alvarez, R., 2006. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. Journal of Environmental Quality, 35: 3–13.
  • Torbert, H.A., Potter, K.N., Morrison Jr, J.E., 1998. Tillage intensity and crop residue effects on nitrogen and carbon cycling in a Vertisol. Communications in Soil Science and Plant Analysis, 29(5-6): 717-727.
  • Unger, P.W., McCalla, T.M., 1980. Conservation tillage systems. Advances in Agronomy 33, 1-58.
  • Xue, J., Pu, C., Liu, S., Chen, Z., Chen, F., Xiao, X., LaL, R., Zhang, H., 2015. Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China. Soil and Tillage Research, 153: 161–168.
There are 45 citations in total.

Details

Journal Section Soil Science and Plant Nutrition
Authors

İsmail Celik

Mert Acar

Publication Date October 15, 2017
Acceptance Date March 23, 2017
Published in Issue Year 2017 Volume: 32 Issue: 3

Cite

APA Celik, İ., & Acar, M. (2017). Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. Anadolu Tarım Bilimleri Dergisi, 32(3), 383-390. https://doi.org/10.7161/omuanajas.289801
AMA Celik İ, Acar M. Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. ANAJAS. October 2017;32(3):383-390. doi:10.7161/omuanajas.289801
Chicago Celik, İsmail, and Mert Acar. “Çukurova koşullarında Toprak işleme yöntemlerinin Agregatlara bağlı Toplam Karbon Ve Azot içerikleri üzerine Etkileri”. Anadolu Tarım Bilimleri Dergisi 32, no. 3 (October 2017): 383-90. https://doi.org/10.7161/omuanajas.289801.
EndNote Celik İ, Acar M (October 1, 2017) Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. Anadolu Tarım Bilimleri Dergisi 32 3 383–390.
IEEE İ. Celik and M. Acar, “Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri”, ANAJAS, vol. 32, no. 3, pp. 383–390, 2017, doi: 10.7161/omuanajas.289801.
ISNAD Celik, İsmail - Acar, Mert. “Çukurova koşullarında Toprak işleme yöntemlerinin Agregatlara bağlı Toplam Karbon Ve Azot içerikleri üzerine Etkileri”. Anadolu Tarım Bilimleri Dergisi 32/3 (October 2017), 383-390. https://doi.org/10.7161/omuanajas.289801.
JAMA Celik İ, Acar M. Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. ANAJAS. 2017;32:383–390.
MLA Celik, İsmail and Mert Acar. “Çukurova koşullarında Toprak işleme yöntemlerinin Agregatlara bağlı Toplam Karbon Ve Azot içerikleri üzerine Etkileri”. Anadolu Tarım Bilimleri Dergisi, vol. 32, no. 3, 2017, pp. 383-90, doi:10.7161/omuanajas.289801.
Vancouver Celik İ, Acar M. Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. ANAJAS. 2017;32(3):383-90.
Online ISSN: 1308-8769