Research Article
BibTex RIS Cite

Investigating of heat conductivity equation with consideration of phase change and effect of soil moisture on heat diffusivity

Year 2018, Volume: 33 Issue: 3, 261 - 269, 18.10.2018
https://doi.org/10.7161/omuanajas.371463

Abstract

Phase change in soil
temperature should be taken into account in application of heat conductivity
equation to different soil layers. In this study, applicability of the solution
in daily soil temperature change was provided with consideration of phase
change in the heat conductivity equation. Root mean square error, absolute
error, maximum relative error, mean bias error, and conformity index between
measured and estimated temperature values of the solution of heat conductivity
equation, and efficiency of the model were calculated at 10, 20 and 50 cm
depths of soil. Results of statistical evaluations showed that solution of heat
conductivity equation within the given boundary condition, including phase
change, can be used for the prediction of daily temperature change along with
soil depth. Soil heat diffusivity showed declining increase with increasing in
soil moisture content, and the relationship between heat diffusivity and
moisture can be expressed by the parabolic function.

References

  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study Q-THERMIE-UNIOVI. Geothermics, 54: 35–42. Banimahd, S.A., Zand-Parsa, Sh., 2013. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium. Agricultural Water Management, 130: 168– 177. Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil plant atmosphere transfer model (SiSPAT). Development and field verification. Journal of Hydrology, 166 (3-4): 213-250. Busby, J., 2015. Determination of thermal properties for horizontal ground collector loops. British Geological Survey, Nottingham, UK. Camillo, P.J., Gurney, R.J., Schmugge, T.J., 1983. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies. Water Resources Research, 19: 371-380. Chacko, P.T., Renuka, G., 2002. Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. Proceedings of the Indian Academy Science (Journal of Earth System Scince)., 111(1): 79–85. Chen, S.T., Huang, Y., Zou, J.W., Shi, Y.S., 2013. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global and Planetary Change, 100: 99–108. Chudnovskii, A.F., 1976. Thermophysics of soils (in Russian). Press Nauka, Moscow, 352 p. Correia, A., Vieira, G., Ramos, M., 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11. Dashtaki, S.G., Homaee, M., Khodaverdiloo, H., 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management, 26 (1): 68–74. Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165–173. Demiralay, İ., 1993. Toprak fiziksel analiz yöntemleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum, 111-120. de Vries, D.A., 1963. Thermal properties of soils. In: W.R. van Wijk (Editor), Physics of Plant Environment. North Holland, Amsterdam, pp. 210-235. Ekberli, I, 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. Journal of Applied Sciences, 6(7): 1520-1526. Ekberli,İ., Gülser, C., 2014. Estımatıon of soıl temperature by heat conductıvıty equatıon. Vestnik Bashkir State Agrarian University (Вестник Башкирского Государственного Аграрного Университета), 2 (30): 12-15. Ekberli, İ., Gülser, C., 2015. İki boyutlu ısı iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi Anadolu Tarım Bilim. Dergisi, 30 (3): 287-291. Ekberli, İ., Gülser C., 2016. Toprağın ısısal yayınımının fonksiyonel değişimi ve toprak sıcaklığına etkisi. Anadolu Tarım Bilimleri Dergisi, 31 (2): 294-300. Ekberli, İ., Gülser, C., Mamedov, A., 2015a. Toprakta Bir Boyutlu Isı İletkenlik Denkleminin İncelenmesinde Benzerlik Teorisinin Uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79. Ekberli, İ., Gülser, C., Özdemir, N., 2015b. Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 300-306. Ekberli, İ., Gülser, C., Özdemir, N., 2017. Farklı toprak derinliklerindeki sıcaklığın tahmininde parabolik fonksiyonun kullanımı. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1): 34- 38. Ekberli İ., Sarılar Y., 2014. Investigating soil temperature variability and thermal diffusivity in grass cowered and shaded areas by trees. Pocvovedeniye i Agrohimiya, Almatı (Почвоведение и агрохимия, Алматы, № 4, 2014), 4: 17-30. Ekberli, İ., Sarılar, Y., 2015a. Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. AnadoluTarım Bilimleri Dergisi, 30(1): 74-85. Ekberli, İ., Sarılar, Y., 2015b. Toprak Sıcaklığının Profil Boyunca Sönme Derinliğinin ve Gecikme Zamanının Belirlenmesi. Ege Üniversitesi Ziraat Fakültesinin Dergisi, 52 (2): 219-225. Elias, E.A, Cichota, R., Torriani, H.H., De Jong van Lier, Q., (2004). Analytical soil–temperature model correction for temporal variation of daily amplitude. Soil Science Society America Journal, 68: 784–788. Farouki, O.T., 1981. The thermal properties of soils in cold regions. Cold Regions Science and Technology, 5(1), 67-75. Guber, A.K., Pachepsky, Y.A., 2010. Multimodeling with pedotransfer functions: documentation and user manual for PTF calculator (CalcPTF), Version 2.0., USDA-ARS, USA. Gülser, C., Ekberli, I., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Sciences, 4(3): 418–423. Gülser, C., Ekberli, İ., 2002. Toprak sıcaklığının profil boyunca değişimi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesinin Dergisi, 17(3): 43-47. Hızalan, E. ve Ünal, H., 1966. Toprakta önemli kimyasal analizler. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 278s. Johansen, D., 1975. Thermal property of soils. Ph.D. Thesis, Trondheim University. Kacar, B., 1994. Bitki ve toprağın kimyasal analizleri:III. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. No:3, 89-98. Knight, J.H., Minasny, B., McBratney, A.B., Koen, T.B., Murphy, B.W., 2018. Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 313: 241–249. Kumar, P., Sarangi, A., Singh, D.K., Parihar, S.S., Sahoo, R.N., 2015. Simulation of salt dynamics in the root zone and yield of wheat cropunder irrigated saline regimes using SWAP model. Agricultural Water Management, 148: 72–83. Krause, P., Boyle, D.P., Base, F.B., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89–97. Kurtener, D.A., Chudnovskii, A.F., 1979. Agrometeorological basics of the thermal amelioration of soils (in Russian). Press Gidrometeoizdat, Leningrad, 231 p. Lei, S., Daniels, J.L., Bian, Z., Wainaina, N., 2011. Improved soil temperature modeling Environmental Earth Sciences, 62:1123–1130. Lettau, H.H. 1954. Improved models of thermal diffusion in the soil. Transactions of the American Geophysical Union, 35: 121-132. Liang, H., Hu, K., Qin, W., Zuo, Q., Zhang, Y., 2017. Modelling the effect of mulching on soil heat transfer, watermovement and crop growth for ground cover rice production system. Field Crops Research, 201: 97–107. Mengistu, A.G., van Rensburg, l.D., Mavimbela, S.S.W., 2017. The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa. Catena, 158: 184–193. Milly, P.C.D., 1986. An event-based simulation model of moisture and energy fluxes at a bare soil surface. Water Resources Research, 22(12): 1680-1692. Novak, M.D. and Black, T.A., 1985. Theoretical Determination of the surface energy balanc and thermal regimes of bare soils. Boundary-Layer Meteorology, 33(4): 313-333. Oladunjoye, M.A., Sanuade, O.A., 2012. Thermal diffusivity, thermal effusivity and specific heat of soils in Olorunsogo Powerplant, southwestern Nigeria. IJRRAS., 13 (2): 502–521. Oladunjoye, M.A., Sanuade, O.A., Olaojo, A.A., 2013. Variability of soil thermal properties of a seasonally cultivated agricultural teaching and research farm, university of Ibadan, south-western Nigeria. GJSFR-D., 13 (8): 41–64. Passerat de Silans, A.M.B., Bruckler, L., Thony, J.L., Vanclin, M., 1989. Numerical modeling of coupledheat and water flows during drying in a stratified bare soil. Comparison with field observations. Journal of Hydrology, 105: 109-138. Passerat de Silans, A.M. B., Monteny , B.A., Lhomme, J.P., 1996. Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81: 201-216. Rafique, R., Kumar, S., Luo, Y.Q., Xu, X.L., Li, D.J., Zhang,W., Asam, Z.U., 2014. Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach. Global and Planetary Change, 118: 106–114. Rozanski, A., Stefaniuk, D., 2016. Prediction of soil solid thermal conductivity from soil separates and organic matter content: computational micromechanics approach. European Journal of Soil Science, 67 (5): 551–563. Rubio, C.M., 2013. A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334. AEES., 1 (4): 45–48. Smits, K.M., Sakaki, T., Limsuwat, A., Illangasekare, T.H., 2009. Determination of the thermal conductivity of sands under varying moisture, drainage/wetting, and porosity conditions-applications in near-surface soil moisture distribution analysis. In: AGU Hydrology Days 2009, Goldon, USA, pp. 57–65. Sterling, A.T. and R.D. Jackson, 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9, ASA, SSSA, Madison WI. Tombul, M., Akyürek, Z., Sorman, A.Ü., 2004. Research note: determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin. Turkey. Hydrology Earth System Sciences, 8 (6): 1200–1209. Trombotto, D., Borzotta, E., 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321–330. Usowicz, B., Lipiec, J., Usowicz, J.B., Marczewski, W., 2013. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536–541. Van Wijk, W.R. (Editor), 1963. Physics of Plant Environment. First edition. North Holland, Amsterdam. Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., van Genuchten, M.T., 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone Journal, 9(4): 795–820. Voronin, A.D., 1986. Fundamentals of soil physics (in Russian). Press Moscow State University, Moscow, 244 p. Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., Liu, W., Qi, J., Huang, J., 2016. Validation of the global land data assimilation system based onmeasurements of soil temperature profiles. Agricultural and Forest Meteorology, 218–219: 288–297. Willmott, C.J., 1981. On the validation of models. Physical Geography, 2: 184–194. Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30: 79–82. Willmott, C. J., Robeson, S.M., Matsuura, K., 2012. Short Communication. A refined index of model performance. International Journal of Climatology, 32: 2088-2094. Yvon-Durocher, G., Allen, A.P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh- Duc, N., del Giorgio, P.A., 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507 (7493): 488–495. Zhang, T., Cai, G., Liu, S., Puppala, A.J., 2017. Investigation on thermal characteristics and prediction models of soils. International Journal of Heat and Mass Transfer, 106: 1074–1086.

Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi

Year 2018, Volume: 33 Issue: 3, 261 - 269, 18.10.2018
https://doi.org/10.7161/omuanajas.371463

Abstract

Isı iletkenlik denkleminin farklı
toprak katmanlarına uygulanmasında, toprak sıcaklığındaki faz değişiminin
dikkate alınması gerekir. Bu çalışmada, farklı toprak katmanları için ısı
iletkenlik denkleminin çözümünde faz değişimi dikkate alınarak, çözümün günlük
toprak sıcaklık değişiminin tahmininde uygulanabilirliği gösterilmiştir.
Toprağın 10, 20 ve 50 cm derinliklerinde, ısı iletkenlik denkleminin çözümü ile
hesaplanan ve ölçülen sıcaklık değerleri arasındaki hata kareler ortalamasının
karekökü, mutlak hata, maksimum nispi hata, ortalama yanılgı hatası, uygunluk
indeksi ve modelin etkinliği hesaplanmıştır. İstatistiksel değerlendirmeler,
ısı iletkenlik denkleminin faz değişimini içeren sınır koşulundaki çözümünün,
toprak derinliği boyunca günlük sıcaklık değişiminin tahmininde
kullanılabilirliğini göstermektedir. Toprağın ısısal yayınım katsayısı artan
toprak nemine bağlı olarak azalan artış göstermekte, ısısal yayınım ve nem
arasındaki ilişkinin ise parabolik fonksiyonla ifadesi mümkün gözükmektedir.

References

  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study Q-THERMIE-UNIOVI. Geothermics, 54: 35–42. Banimahd, S.A., Zand-Parsa, Sh., 2013. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium. Agricultural Water Management, 130: 168– 177. Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil plant atmosphere transfer model (SiSPAT). Development and field verification. Journal of Hydrology, 166 (3-4): 213-250. Busby, J., 2015. Determination of thermal properties for horizontal ground collector loops. British Geological Survey, Nottingham, UK. Camillo, P.J., Gurney, R.J., Schmugge, T.J., 1983. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies. Water Resources Research, 19: 371-380. Chacko, P.T., Renuka, G., 2002. Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. Proceedings of the Indian Academy Science (Journal of Earth System Scince)., 111(1): 79–85. Chen, S.T., Huang, Y., Zou, J.W., Shi, Y.S., 2013. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global and Planetary Change, 100: 99–108. Chudnovskii, A.F., 1976. Thermophysics of soils (in Russian). Press Nauka, Moscow, 352 p. Correia, A., Vieira, G., Ramos, M., 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11. Dashtaki, S.G., Homaee, M., Khodaverdiloo, H., 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management, 26 (1): 68–74. Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165–173. Demiralay, İ., 1993. Toprak fiziksel analiz yöntemleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum, 111-120. de Vries, D.A., 1963. Thermal properties of soils. In: W.R. van Wijk (Editor), Physics of Plant Environment. North Holland, Amsterdam, pp. 210-235. Ekberli, I, 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. Journal of Applied Sciences, 6(7): 1520-1526. Ekberli,İ., Gülser, C., 2014. Estımatıon of soıl temperature by heat conductıvıty equatıon. Vestnik Bashkir State Agrarian University (Вестник Башкирского Государственного Аграрного Университета), 2 (30): 12-15. Ekberli, İ., Gülser, C., 2015. İki boyutlu ısı iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi Anadolu Tarım Bilim. Dergisi, 30 (3): 287-291. Ekberli, İ., Gülser C., 2016. Toprağın ısısal yayınımının fonksiyonel değişimi ve toprak sıcaklığına etkisi. Anadolu Tarım Bilimleri Dergisi, 31 (2): 294-300. Ekberli, İ., Gülser, C., Mamedov, A., 2015a. Toprakta Bir Boyutlu Isı İletkenlik Denkleminin İncelenmesinde Benzerlik Teorisinin Uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79. Ekberli, İ., Gülser, C., Özdemir, N., 2015b. Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 300-306. Ekberli, İ., Gülser, C., Özdemir, N., 2017. Farklı toprak derinliklerindeki sıcaklığın tahmininde parabolik fonksiyonun kullanımı. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1): 34- 38. Ekberli İ., Sarılar Y., 2014. Investigating soil temperature variability and thermal diffusivity in grass cowered and shaded areas by trees. Pocvovedeniye i Agrohimiya, Almatı (Почвоведение и агрохимия, Алматы, № 4, 2014), 4: 17-30. Ekberli, İ., Sarılar, Y., 2015a. Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. AnadoluTarım Bilimleri Dergisi, 30(1): 74-85. Ekberli, İ., Sarılar, Y., 2015b. Toprak Sıcaklığının Profil Boyunca Sönme Derinliğinin ve Gecikme Zamanının Belirlenmesi. Ege Üniversitesi Ziraat Fakültesinin Dergisi, 52 (2): 219-225. Elias, E.A, Cichota, R., Torriani, H.H., De Jong van Lier, Q., (2004). Analytical soil–temperature model correction for temporal variation of daily amplitude. Soil Science Society America Journal, 68: 784–788. Farouki, O.T., 1981. The thermal properties of soils in cold regions. Cold Regions Science and Technology, 5(1), 67-75. Guber, A.K., Pachepsky, Y.A., 2010. Multimodeling with pedotransfer functions: documentation and user manual for PTF calculator (CalcPTF), Version 2.0., USDA-ARS, USA. Gülser, C., Ekberli, I., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Sciences, 4(3): 418–423. Gülser, C., Ekberli, İ., 2002. Toprak sıcaklığının profil boyunca değişimi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesinin Dergisi, 17(3): 43-47. Hızalan, E. ve Ünal, H., 1966. Toprakta önemli kimyasal analizler. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 278s. Johansen, D., 1975. Thermal property of soils. Ph.D. Thesis, Trondheim University. Kacar, B., 1994. Bitki ve toprağın kimyasal analizleri:III. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. No:3, 89-98. Knight, J.H., Minasny, B., McBratney, A.B., Koen, T.B., Murphy, B.W., 2018. Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 313: 241–249. Kumar, P., Sarangi, A., Singh, D.K., Parihar, S.S., Sahoo, R.N., 2015. Simulation of salt dynamics in the root zone and yield of wheat cropunder irrigated saline regimes using SWAP model. Agricultural Water Management, 148: 72–83. Krause, P., Boyle, D.P., Base, F.B., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89–97. Kurtener, D.A., Chudnovskii, A.F., 1979. Agrometeorological basics of the thermal amelioration of soils (in Russian). Press Gidrometeoizdat, Leningrad, 231 p. Lei, S., Daniels, J.L., Bian, Z., Wainaina, N., 2011. Improved soil temperature modeling Environmental Earth Sciences, 62:1123–1130. Lettau, H.H. 1954. Improved models of thermal diffusion in the soil. Transactions of the American Geophysical Union, 35: 121-132. Liang, H., Hu, K., Qin, W., Zuo, Q., Zhang, Y., 2017. Modelling the effect of mulching on soil heat transfer, watermovement and crop growth for ground cover rice production system. Field Crops Research, 201: 97–107. Mengistu, A.G., van Rensburg, l.D., Mavimbela, S.S.W., 2017. The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa. Catena, 158: 184–193. Milly, P.C.D., 1986. An event-based simulation model of moisture and energy fluxes at a bare soil surface. Water Resources Research, 22(12): 1680-1692. Novak, M.D. and Black, T.A., 1985. Theoretical Determination of the surface energy balanc and thermal regimes of bare soils. Boundary-Layer Meteorology, 33(4): 313-333. Oladunjoye, M.A., Sanuade, O.A., 2012. Thermal diffusivity, thermal effusivity and specific heat of soils in Olorunsogo Powerplant, southwestern Nigeria. IJRRAS., 13 (2): 502–521. Oladunjoye, M.A., Sanuade, O.A., Olaojo, A.A., 2013. Variability of soil thermal properties of a seasonally cultivated agricultural teaching and research farm, university of Ibadan, south-western Nigeria. GJSFR-D., 13 (8): 41–64. Passerat de Silans, A.M.B., Bruckler, L., Thony, J.L., Vanclin, M., 1989. Numerical modeling of coupledheat and water flows during drying in a stratified bare soil. Comparison with field observations. Journal of Hydrology, 105: 109-138. Passerat de Silans, A.M. B., Monteny , B.A., Lhomme, J.P., 1996. Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81: 201-216. Rafique, R., Kumar, S., Luo, Y.Q., Xu, X.L., Li, D.J., Zhang,W., Asam, Z.U., 2014. Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach. Global and Planetary Change, 118: 106–114. Rozanski, A., Stefaniuk, D., 2016. Prediction of soil solid thermal conductivity from soil separates and organic matter content: computational micromechanics approach. European Journal of Soil Science, 67 (5): 551–563. Rubio, C.M., 2013. A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334. AEES., 1 (4): 45–48. Smits, K.M., Sakaki, T., Limsuwat, A., Illangasekare, T.H., 2009. Determination of the thermal conductivity of sands under varying moisture, drainage/wetting, and porosity conditions-applications in near-surface soil moisture distribution analysis. In: AGU Hydrology Days 2009, Goldon, USA, pp. 57–65. Sterling, A.T. and R.D. Jackson, 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9, ASA, SSSA, Madison WI. Tombul, M., Akyürek, Z., Sorman, A.Ü., 2004. Research note: determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin. Turkey. Hydrology Earth System Sciences, 8 (6): 1200–1209. Trombotto, D., Borzotta, E., 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321–330. Usowicz, B., Lipiec, J., Usowicz, J.B., Marczewski, W., 2013. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer, 57: 536–541. Van Wijk, W.R. (Editor), 1963. Physics of Plant Environment. First edition. North Holland, Amsterdam. Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., van Genuchten, M.T., 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone Journal, 9(4): 795–820. Voronin, A.D., 1986. Fundamentals of soil physics (in Russian). Press Moscow State University, Moscow, 244 p. Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., Liu, W., Qi, J., Huang, J., 2016. Validation of the global land data assimilation system based onmeasurements of soil temperature profiles. Agricultural and Forest Meteorology, 218–219: 288–297. Willmott, C.J., 1981. On the validation of models. Physical Geography, 2: 184–194. Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30: 79–82. Willmott, C. J., Robeson, S.M., Matsuura, K., 2012. Short Communication. A refined index of model performance. International Journal of Climatology, 32: 2088-2094. Yvon-Durocher, G., Allen, A.P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh- Duc, N., del Giorgio, P.A., 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507 (7493): 488–495. Zhang, T., Cai, G., Liu, S., Puppala, A.J., 2017. Investigation on thermal characteristics and prediction models of soils. International Journal of Heat and Mass Transfer, 106: 1074–1086.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Soil Science and Plant Nutrition
Authors

İmanverdi Ekberli

Coşkun Gülser

Amrakh Mamedov This is me

Nutullah Özdemir

Publication Date October 18, 2018
Acceptance Date August 6, 2018
Published in Issue Year 2018 Volume: 33 Issue: 3

Cite

APA Ekberli, İ., Gülser, C., Mamedov, A., Özdemir, N. (2018). Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3), 261-269. https://doi.org/10.7161/omuanajas.371463
AMA Ekberli İ, Gülser C, Mamedov A, Özdemir N. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. ANAJAS. October 2018;33(3):261-269. doi:10.7161/omuanajas.371463
Chicago Ekberli, İmanverdi, Coşkun Gülser, Amrakh Mamedov, and Nutullah Özdemir. “Faz değişimine bağlı Olarak ısı iletkenliği Denkleminin Incelenmesi Ve Toprak Neminin ısısal yayınıma Etkisi”. Anadolu Tarım Bilimleri Dergisi 33, no. 3 (October 2018): 261-69. https://doi.org/10.7161/omuanajas.371463.
EndNote Ekberli İ, Gülser C, Mamedov A, Özdemir N (October 1, 2018) Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi 33 3 261–269.
IEEE İ. Ekberli, C. Gülser, A. Mamedov, and N. Özdemir, “Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi”, ANAJAS, vol. 33, no. 3, pp. 261–269, 2018, doi: 10.7161/omuanajas.371463.
ISNAD Ekberli, İmanverdi et al. “Faz değişimine bağlı Olarak ısı iletkenliği Denkleminin Incelenmesi Ve Toprak Neminin ısısal yayınıma Etkisi”. Anadolu Tarım Bilimleri Dergisi 33/3 (October 2018), 261-269. https://doi.org/10.7161/omuanajas.371463.
JAMA Ekberli İ, Gülser C, Mamedov A, Özdemir N. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. ANAJAS. 2018;33:261–269.
MLA Ekberli, İmanverdi et al. “Faz değişimine bağlı Olarak ısı iletkenliği Denkleminin Incelenmesi Ve Toprak Neminin ısısal yayınıma Etkisi”. Anadolu Tarım Bilimleri Dergisi, vol. 33, no. 3, 2018, pp. 261-9, doi:10.7161/omuanajas.371463.
Vancouver Ekberli İ, Gülser C, Mamedov A, Özdemir N. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. ANAJAS. 2018;33(3):261-9.
Online ISSN: 1308-8769