Research Article
BibTex RIS Cite

Interspecific hybridization and hybrid seed traits of Solanum melongena and Solanum aethiopicum genotypes for eggplant rootstock breeding

Year 2019, Volume: 34 Issue: 2, 117 - 127, 25.06.2019
https://doi.org/10.7161/omuanajas.558940

Abstract

Choosing the best rootstock in grafted seedling production is
very important. As rootstocks, genotypes within the species with the desired
traits can be used, and intraspecific or interspecific hybrid rootstocks can be
used. In this study, the hybridization ability of local eggplant genotypes (Solanum melongena
) and relative
eggplants genotypes (
Solanum aethiopicum)
and the hybrid seed characteristics obtained from the fruits of these
combinations were determined. In this study, genetic materials consisting of 6
local eggplant genotypes (
S. melongena)
which were collected from different locations of Turkey were used as the female
parents and 10 relative eggplant genotypes (
S.
aethiopicum
) were used as the male parents. Both in the spring and autumn
periods, 30 hybridizations were made for each interspecific combinations
(S. melongena x S. aethiopicum). The fruit set number and the
fruit set percentage (%) were determined in these hybrid combinations.
In the study, seed characteristics
(seed width (mm), length (mm) and thickness (mm), seed volume, seed shape
index, 100 grain weight (g), abortive seed number / fruit, abortive seed ratio,
and number of seeds / fruits) of the spring period combinations' hybrid seeds
have been investigated. As a result of hybridization in two different periods;
average fruit set percentage was determined as 47.2% depending on the parents.
Crossing compatibility was found to be highest in the female parents of SM 6
(59 %), SM8 (55 %) and in the male parents of SA8 (58%), SA6 (55 %), SA12 (51 %),
SA17-1 (50 %) genotypes. In terms of the number of hybrid seeds per fruit, the
highest number was obtained from interspecific combination of SM6 x SA6 (275).
It was followed by the SM8 x SA6 (202.2), SM12 x SA6 (200.0) and SM6 x SA17-2
(116.5) interspecific combinations. The results showed that the interspecific
combinations of SM8 X SA6, SM6 XSA6, SM12 X SA6 and SM6 X SA17-2 were used as
rootstock in the production of grafted eggplant seedlings in terms of both
cross-species hybrid fruit set ratio and the number of seeds per fruit.

References

  • Afful, N.T., Nyadanu, D., Akromah, R., Amoatey, H.M., Annor, C., Diawouh, R.G., 2018. Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethiopicum (Shum group). J. Plant Breed. Crop Sci., 10: 1-12.
  • Ali, M., Fujieda, K., 1990. Cross compatibility between eggplant (Solanum melongena) and wild relatives. J. Jpn. Soc. Hortic. Sci., 58: 977-984.
  • Balkaya, A., Kandemir, D., Sarıbaş, Ş., 2015. Türkiye sebze fidesi üretimindeki son gelişmeler. TÜRKTOB Türkiye Toh. Bir. Der., 4(13): 4-8.
  • Balkaya, A., 2014. Aşılı sebze üretiminde kullanılan anaçlar. TÜRKTOB Türkiye Toh. Bir. Der., 3(106): 4-7.
  • Behera, T.K., Singh, N., 2002. Inter-specific crosses between eggplant (Solanum melongena L.) with related Solanum species. Sci. Hort., 95(1-2): 165-172.
  • Bletsos, F., Roupakias, D., Tsaktsira, M., Scaltsoyjannes, A., 2004. Produc-tion and characterization of interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and Solanum macrocarpon L. Sci. Hort., 101(1-2):11–21.
  • Boyacı, H.F., 2007. Patlıcanlarda Fusarium splgunluğuna dayanıklılık kaynakları ve dayanıklılığın kalıtımı. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 96s.
  • Calvo-Asensio, I., Prohens, J., Gisbert, C., 2014. Vigor for in vitro culture traits in S. melongena × S. aethiopicum hybrids with potential as rootstocks for eggplant. Sci. World J. 2014, 1–8.
  • Collonier, C., Fock, I., Kashyap, V., 2001. Applications of biotechnology in eggplant. Plant Cell Tiss. Org., 65(2): 91-107.
  • Çürük, S., Dayan, A., 2017. Solanum melongena ve Solanum torvum’un türler arası melezlerinin morfolojik özellikleri. Mediterranean Agricultural Sciences, 30(3): 179-188.
  • Daunay, M.C., Chaput, M.H., Sihachakr, D., Allot, M., Vedel, F., Ducreux, G., 1993. Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theor. Appl. Genet., 85(6-7): 841-85.
  • Daunay, M.C. 2008. Handbook of Plant Breeding: Vegetables II, Springer, New York, USA, 163-220.
  • Devi, C.P., Munshi, A.D., Behera, T.K., Choudhary, H., Vinod Gurung, B., Saha, P., 2015. Cross compatibility in interspecific hybridization of eggplant, Solanum melongena, with its wild relatives. Sci. Hort. 193: 353-358.
  • Fidebirlik, 2016. Fide Üreticileri Alt Birliği. http://www.fidebirlik.org.tr/, (Erişim tarihi: 06 Şubat 2019)
  • García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., Arrones, A., Knapp, S., Prohens, J., Plazas, M., 2019. First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silver leaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci. Hort., 246: 563-573.
  • Gisbert, C., Prohens, J., Nuez F., 2011a. Performance of eggplant grafted on to cultivated, wild, and hybrid materials of eggplant and tomato. Int. J. of Plant Pro., 5(4): 367-380.
  • Gisbert, C., Prohens, J., Raigon, M.D., Stommel, J.R., Nuez, F., 2011b. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hort., 128(1): 14-22.
  • Hayase, H., 1961. Cucurbita crosses: XIII. Utilization of bud pollination in obtaining interspesific hybrids of C. Pepo x C. Maxima. Japanese J. of Breed., 25: 181-190.
  • Iwamoto, Y., Hirai, M., Ohmido, N., Fukui, K., Ezura, H., 2007. Fertile somatic hybrids between Solanum integrifolium and S. sanitwongsei (sny. S. kurzii) as candidates for bacterial wilt-resistant rootstock of eggplant. Plant Biotechnology, 24: 179-184.
  • İko, M., Ivani, A., Bohanec, B., 2003. Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science, 165(3): 663-669.
  • Kandemir, D., Sarıbaş, H.Ş., Balkaya, A., 2016. Aşılı patlıcan üretiminde kullanılan anaçların verim ve kalite üzerine etkileri. Tarım Gündem Dergisi, 6(33): 24-28.
  • Karaağaç, O., Özbakır, M., Balkaya, A., 2011. Barbunya fasulye (Phaseolus vulgaris var. pinto) tohumlarının farklı nem içeriklerinde bazı fiziksel özelliklerinin belirlenmesi. IV. Tohumculuk Kongresi, 14–17 Haziran, Samsun.
  • Karaağaç, O., 2013. Karadeniz Bölgesinden Toplanan Kestane Kabağı (C. maxima Duchesne) ve Bal Kabağı (C. moschata Duchesne) Genotiplerinin Karpuza Anaçlık Potansiyellerinin Belirlenmesi. Doktora Tezi. OMÜ Fen Bilimleri Enstitüsü, 238s.
  • Karaağaç, O., Balkaya, A., 2013. Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Sci. Hort., 149: 9-12.
  • King, S., Davis, A.R., Zhang, X., Crosby, K., 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hort., 127(2): 106-111.
  • Kumchai, J., Wei, Y.C., Lee, C.Y., Chen, F.C., Chin, S.W., 2013. Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 12: 755-764.
  • Nascimento, W.M., Pinheiro, F., Freitas, R.A., 2007. Utilizaço do ethephon para a produço de sementes de hbrido de abbora tipo tetsukabuto (Utilization of 226 ethephon on hybrid seed production of tetsukabuto type squash), Revista Brasileira de Sementes, 29(2): 10-14.
  • Oda, M., 1999. Grafting of vegetables to improve greenhouse production. Food & Fertilizer Technology Centre Extension Bulletin, 480: 1-11.
  • Oyelana, O.A., Ugborogho, R.E., 2008. Phenotypic variation of F1 and F2 populations from three species of Solanum L. (Solanaceae). Afr. J. Biotechnol., 7: 2359-2367.
  • Plazas, M., Vilanova, S., Gramazio, P., Rodriguez-Burruezo, A., Rajakapasha, R., Ramya, F., Niran, L., Fonseka, H., Kouassi, B., Kouassi, A., Prohens, J., 2016.
  • Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hort. Sci., 141: 34-44.
  • Prohens, J., Plazas, M., Raigón, M.D., Seguí-Simarro, J.M., Stommel, J.R., Vilanova, S., 2012. Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (S. melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186: 517-538.
  • Rao, S.V., Rao, B.G.S., 1984. Studies on the crossability relationships of some spinous Solanum. Theor. Appl. Genet., 67: 419-426.
  • Rhodes, A.M., 1959. Species hybridization and interspecific gene transfer in the genus, Cucurbita. Proceeding American Society Horticultural Science, 74: 546-552.
  • Sakata, Y., Ohara, T., Sugiyama, M., 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort, 731: 159–170.
  • Sihachakr, D., Daunay, M.C., Serraf, I., Chaput, M.H., Mussio, I., Haicour, R., Rossignol, L. Ducreux, G., 1994. Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Somatic Hybridization in Crop Improvement, Vol I, Springer-Verlag, Berlin, Heidelberg, 255-278.
  • Tatlioglu, T., 1993. Cucumber (Cucumis sativus L.) In: Kalloo G, Bergh BO. Genetic improvement of vegetable crops. Tarrytown, NY, Pergamon Press, 197-234.
  • Toppino, L., Vale, G., Rotino, G.L., 2008. Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22 (2): 237-250.
  • Whitaker, T.W., Robinson, R.W., 1986. Squash breeding. In: Bassett M.J. (Ed.). Breeding Vegetable Crops. Westport, Connecticut: Avi, 209-242.
  • Yamaguchi, J., Shiga, T., 1993. Characteristics of regenerated plants via protoplast electrofusion between melon (Cucumis melo) and pumpkin (interspecific hybrid, Cucurbita maxima x C. moschata). Japanese Journal of Breeding, 43: 173-182.
  • Yamakawa, K., 1982. Use of rootstocks in solanaceous fruit–vegetable production in Japan. Japan Agricultural Research Quarterly, 15: 175-179.
  • Yılmaz, S., Çelik, İ., Boyacı, F., Yeşilova, Ö., 2005. Aşılı domates fide üretiminde kullanılan Solanum torvum’un Fusarium oxysporium f. sp. melongena’ya karşı reaksiyonları ve anaç performansının belirlenmesi. II. Tohumculuk Kongresi, 9-11 Kasım, Adana.
  • Yongan, C., Bingkui, Z., Enhui, Z., Zunlian, Z., 2002a. Study on affinity of sexual hybridization between Cucurbita maxima and Cucurbita moschata. Cucurbit Genetics Cooperative Report, 25: 54-55.
  • Yongan, C., Bingkui, Z., Enhui, Z., Zunlian, Z., 2002b. Germplasm innovation by interspecific crosses in pumpkin. Cucurbit Genetics Cooperative Report, 25: 56-57.

Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri

Year 2019, Volume: 34 Issue: 2, 117 - 127, 25.06.2019
https://doi.org/10.7161/omuanajas.558940

Abstract

Aşılı fide üretiminde anaç seçimi
oldukça önemlidir. Anaç olarak, istenilen özelliklere sahip tür içindeki
genotipler kullanılabildiği gibi tür içi veya türler arası melez anaçlar da
kullanılabilmektedir. Bu çalışmada, yerel patlıcan genotipleri (Solanum melongena) ile yabani patlıcan
genotiplerinin (Solanum aethiopicum)
türler arası melezlenebilirlik durumları ile bu kombinasyonlara ait meyvelerden
elde edilen hibrit tohum özellikleri incelenmiştir. Araştırmada, genetik
materyal olarak ülkemizin farklı lokasyonlarından toplanarak
karakterizasyonları yapılmış ve uzun süre kendilemeler yapılarak saflaştırılmış
durumda bulunan 6 adet yerel patlıcan genotipi (S. melongena) ana ebeveyn ve 10 adet yabani patlıcan genotipi (S. aethiopicum) ise baba ebeveyn olarak
kullanılmıştır. İlkbahar ve sonbahar dönemi olmak üzere iki yetiştirme
döneminde de, türler arası melez kombinasyonları (S.melongena x S.aethiopicum)
için 30’ar adet melezleme yapılmıştır. Bu melez kombinasyonlarında tutan meyve
sayısı ve meyve tutum oranları (%) belirlenmiştir. Çalışmada, ilkbahar
döneminde yapılan melez kombinasyonlarına ait hasat edilen meyvelerin tohumlarında;
tohum eni (mm), boyu (mm) ve kalınlığı (mm), 
tohum şekil indeksi, 100 tane ağırlığı (g), abortif tohum sayısı / meyve
(adet), abortif tohum oranı (%) ve tohum sayısı / meyve (adet) özellikleri
incelenmiştir. İki farklı dönemde yapılan melezlemeler sonucunda; ebeveynlere
bağlı olarak ortalama meyve tutum oranı % 47.2 olarak belirlenmiştir. Ana
ebeveynlerden SM6 (% 59) ve SM8 (%55) ile baba ebeveynlerden SA8 (% 58), SA6 (%
55), SA12 (% 51) ve SA17-1 (% 50) genotipleri, melez uyuşumu en yüksek genotipler
olarak tespit edilmiştir. Meyve başına hibrit tohum sayısı yönünden SM6 x SA6
kombinasyonunda 275 adet ile en yüksek tohum verimi elde edilmiştir. Bu
kombinasyonu; SM8 x SA6 (202.17 adet), SM12 x SA6 (200.0 adet) ve SM6 x SA17-2
(116.5 adet) kombinasyonları takip etmiştir. Araştırma sonuçları, hem türler
arası melez meyve tutum oranı ve hem de meyve başına elde edilen tohum sayısı
yönünden SM8 X SA6, SM6 X SA6, SM12 X SA6 ve SM6 X SA17-2 kombinasyonlarının
aşılı patlıcan fidesi üretiminde anaçlık olarak kullanılma potansiyeli
bakımından öne çıktığını göstermiştir.





References

  • Afful, N.T., Nyadanu, D., Akromah, R., Amoatey, H.M., Annor, C., Diawouh, R.G., 2018. Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethiopicum (Shum group). J. Plant Breed. Crop Sci., 10: 1-12.
  • Ali, M., Fujieda, K., 1990. Cross compatibility between eggplant (Solanum melongena) and wild relatives. J. Jpn. Soc. Hortic. Sci., 58: 977-984.
  • Balkaya, A., Kandemir, D., Sarıbaş, Ş., 2015. Türkiye sebze fidesi üretimindeki son gelişmeler. TÜRKTOB Türkiye Toh. Bir. Der., 4(13): 4-8.
  • Balkaya, A., 2014. Aşılı sebze üretiminde kullanılan anaçlar. TÜRKTOB Türkiye Toh. Bir. Der., 3(106): 4-7.
  • Behera, T.K., Singh, N., 2002. Inter-specific crosses between eggplant (Solanum melongena L.) with related Solanum species. Sci. Hort., 95(1-2): 165-172.
  • Bletsos, F., Roupakias, D., Tsaktsira, M., Scaltsoyjannes, A., 2004. Produc-tion and characterization of interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and Solanum macrocarpon L. Sci. Hort., 101(1-2):11–21.
  • Boyacı, H.F., 2007. Patlıcanlarda Fusarium splgunluğuna dayanıklılık kaynakları ve dayanıklılığın kalıtımı. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 96s.
  • Calvo-Asensio, I., Prohens, J., Gisbert, C., 2014. Vigor for in vitro culture traits in S. melongena × S. aethiopicum hybrids with potential as rootstocks for eggplant. Sci. World J. 2014, 1–8.
  • Collonier, C., Fock, I., Kashyap, V., 2001. Applications of biotechnology in eggplant. Plant Cell Tiss. Org., 65(2): 91-107.
  • Çürük, S., Dayan, A., 2017. Solanum melongena ve Solanum torvum’un türler arası melezlerinin morfolojik özellikleri. Mediterranean Agricultural Sciences, 30(3): 179-188.
  • Daunay, M.C., Chaput, M.H., Sihachakr, D., Allot, M., Vedel, F., Ducreux, G., 1993. Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theor. Appl. Genet., 85(6-7): 841-85.
  • Daunay, M.C. 2008. Handbook of Plant Breeding: Vegetables II, Springer, New York, USA, 163-220.
  • Devi, C.P., Munshi, A.D., Behera, T.K., Choudhary, H., Vinod Gurung, B., Saha, P., 2015. Cross compatibility in interspecific hybridization of eggplant, Solanum melongena, with its wild relatives. Sci. Hort. 193: 353-358.
  • Fidebirlik, 2016. Fide Üreticileri Alt Birliği. http://www.fidebirlik.org.tr/, (Erişim tarihi: 06 Şubat 2019)
  • García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., Arrones, A., Knapp, S., Prohens, J., Plazas, M., 2019. First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silver leaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci. Hort., 246: 563-573.
  • Gisbert, C., Prohens, J., Nuez F., 2011a. Performance of eggplant grafted on to cultivated, wild, and hybrid materials of eggplant and tomato. Int. J. of Plant Pro., 5(4): 367-380.
  • Gisbert, C., Prohens, J., Raigon, M.D., Stommel, J.R., Nuez, F., 2011b. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hort., 128(1): 14-22.
  • Hayase, H., 1961. Cucurbita crosses: XIII. Utilization of bud pollination in obtaining interspesific hybrids of C. Pepo x C. Maxima. Japanese J. of Breed., 25: 181-190.
  • Iwamoto, Y., Hirai, M., Ohmido, N., Fukui, K., Ezura, H., 2007. Fertile somatic hybrids between Solanum integrifolium and S. sanitwongsei (sny. S. kurzii) as candidates for bacterial wilt-resistant rootstock of eggplant. Plant Biotechnology, 24: 179-184.
  • İko, M., Ivani, A., Bohanec, B., 2003. Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science, 165(3): 663-669.
  • Kandemir, D., Sarıbaş, H.Ş., Balkaya, A., 2016. Aşılı patlıcan üretiminde kullanılan anaçların verim ve kalite üzerine etkileri. Tarım Gündem Dergisi, 6(33): 24-28.
  • Karaağaç, O., Özbakır, M., Balkaya, A., 2011. Barbunya fasulye (Phaseolus vulgaris var. pinto) tohumlarının farklı nem içeriklerinde bazı fiziksel özelliklerinin belirlenmesi. IV. Tohumculuk Kongresi, 14–17 Haziran, Samsun.
  • Karaağaç, O., 2013. Karadeniz Bölgesinden Toplanan Kestane Kabağı (C. maxima Duchesne) ve Bal Kabağı (C. moschata Duchesne) Genotiplerinin Karpuza Anaçlık Potansiyellerinin Belirlenmesi. Doktora Tezi. OMÜ Fen Bilimleri Enstitüsü, 238s.
  • Karaağaç, O., Balkaya, A., 2013. Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Sci. Hort., 149: 9-12.
  • King, S., Davis, A.R., Zhang, X., Crosby, K., 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hort., 127(2): 106-111.
  • Kumchai, J., Wei, Y.C., Lee, C.Y., Chen, F.C., Chin, S.W., 2013. Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 12: 755-764.
  • Nascimento, W.M., Pinheiro, F., Freitas, R.A., 2007. Utilizaço do ethephon para a produço de sementes de hbrido de abbora tipo tetsukabuto (Utilization of 226 ethephon on hybrid seed production of tetsukabuto type squash), Revista Brasileira de Sementes, 29(2): 10-14.
  • Oda, M., 1999. Grafting of vegetables to improve greenhouse production. Food & Fertilizer Technology Centre Extension Bulletin, 480: 1-11.
  • Oyelana, O.A., Ugborogho, R.E., 2008. Phenotypic variation of F1 and F2 populations from three species of Solanum L. (Solanaceae). Afr. J. Biotechnol., 7: 2359-2367.
  • Plazas, M., Vilanova, S., Gramazio, P., Rodriguez-Burruezo, A., Rajakapasha, R., Ramya, F., Niran, L., Fonseka, H., Kouassi, B., Kouassi, A., Prohens, J., 2016.
  • Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hort. Sci., 141: 34-44.
  • Prohens, J., Plazas, M., Raigón, M.D., Seguí-Simarro, J.M., Stommel, J.R., Vilanova, S., 2012. Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (S. melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186: 517-538.
  • Rao, S.V., Rao, B.G.S., 1984. Studies on the crossability relationships of some spinous Solanum. Theor. Appl. Genet., 67: 419-426.
  • Rhodes, A.M., 1959. Species hybridization and interspecific gene transfer in the genus, Cucurbita. Proceeding American Society Horticultural Science, 74: 546-552.
  • Sakata, Y., Ohara, T., Sugiyama, M., 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort, 731: 159–170.
  • Sihachakr, D., Daunay, M.C., Serraf, I., Chaput, M.H., Mussio, I., Haicour, R., Rossignol, L. Ducreux, G., 1994. Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Somatic Hybridization in Crop Improvement, Vol I, Springer-Verlag, Berlin, Heidelberg, 255-278.
  • Tatlioglu, T., 1993. Cucumber (Cucumis sativus L.) In: Kalloo G, Bergh BO. Genetic improvement of vegetable crops. Tarrytown, NY, Pergamon Press, 197-234.
  • Toppino, L., Vale, G., Rotino, G.L., 2008. Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22 (2): 237-250.
  • Whitaker, T.W., Robinson, R.W., 1986. Squash breeding. In: Bassett M.J. (Ed.). Breeding Vegetable Crops. Westport, Connecticut: Avi, 209-242.
  • Yamaguchi, J., Shiga, T., 1993. Characteristics of regenerated plants via protoplast electrofusion between melon (Cucumis melo) and pumpkin (interspecific hybrid, Cucurbita maxima x C. moschata). Japanese Journal of Breeding, 43: 173-182.
  • Yamakawa, K., 1982. Use of rootstocks in solanaceous fruit–vegetable production in Japan. Japan Agricultural Research Quarterly, 15: 175-179.
  • Yılmaz, S., Çelik, İ., Boyacı, F., Yeşilova, Ö., 2005. Aşılı domates fide üretiminde kullanılan Solanum torvum’un Fusarium oxysporium f. sp. melongena’ya karşı reaksiyonları ve anaç performansının belirlenmesi. II. Tohumculuk Kongresi, 9-11 Kasım, Adana.
  • Yongan, C., Bingkui, Z., Enhui, Z., Zunlian, Z., 2002a. Study on affinity of sexual hybridization between Cucurbita maxima and Cucurbita moschata. Cucurbit Genetics Cooperative Report, 25: 54-55.
  • Yongan, C., Bingkui, Z., Enhui, Z., Zunlian, Z., 2002b. Germplasm innovation by interspecific crosses in pumpkin. Cucurbit Genetics Cooperative Report, 25: 56-57.
There are 44 citations in total.

Details

Primary Language Turkish
Journal Section Horticultural Sciences
Authors

Şeyma Sarıbaş 0000-0001-7290-2749

Ahmet Balkaya 0000-0001-9114-615X

Dilek Kandemir 0000-0002-3097-3394

Onur Karaağaç 0000-0002-8794-2556

Publication Date June 25, 2019
Acceptance Date June 10, 2019
Published in Issue Year 2019 Volume: 34 Issue: 2

Cite

APA Sarıbaş, Ş., Balkaya, A., Kandemir, D., Karaağaç, O. (2019). Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri. Anadolu Tarım Bilimleri Dergisi, 34(2), 117-127. https://doi.org/10.7161/omuanajas.558940
AMA Sarıbaş Ş, Balkaya A, Kandemir D, Karaağaç O. Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri. ANAJAS. June 2019;34(2):117-127. doi:10.7161/omuanajas.558940
Chicago Sarıbaş, Şeyma, Ahmet Balkaya, Dilek Kandemir, and Onur Karaağaç. “Patlıcan Anaç ıslahında Solanum Melongena Ve Solanum Aethiopicum Genotipleri arasında türler Arası Melez uyuşumu Ve Hibrit Tohum özellikleri”. Anadolu Tarım Bilimleri Dergisi 34, no. 2 (June 2019): 117-27. https://doi.org/10.7161/omuanajas.558940.
EndNote Sarıbaş Ş, Balkaya A, Kandemir D, Karaağaç O (June 1, 2019) Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri. Anadolu Tarım Bilimleri Dergisi 34 2 117–127.
IEEE Ş. Sarıbaş, A. Balkaya, D. Kandemir, and O. Karaağaç, “Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri”, ANAJAS, vol. 34, no. 2, pp. 117–127, 2019, doi: 10.7161/omuanajas.558940.
ISNAD Sarıbaş, Şeyma et al. “Patlıcan Anaç ıslahında Solanum Melongena Ve Solanum Aethiopicum Genotipleri arasında türler Arası Melez uyuşumu Ve Hibrit Tohum özellikleri”. Anadolu Tarım Bilimleri Dergisi 34/2 (June 2019), 117-127. https://doi.org/10.7161/omuanajas.558940.
JAMA Sarıbaş Ş, Balkaya A, Kandemir D, Karaağaç O. Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri. ANAJAS. 2019;34:117–127.
MLA Sarıbaş, Şeyma et al. “Patlıcan Anaç ıslahında Solanum Melongena Ve Solanum Aethiopicum Genotipleri arasında türler Arası Melez uyuşumu Ve Hibrit Tohum özellikleri”. Anadolu Tarım Bilimleri Dergisi, vol. 34, no. 2, 2019, pp. 117-2, doi:10.7161/omuanajas.558940.
Vancouver Sarıbaş Ş, Balkaya A, Kandemir D, Karaağaç O. Patlıcan anaç ıslahında Solanum melongena ve Solanum aethiopicum genotipleri arasında türler arası melez uyuşumu ve hibrit tohum özellikleri. ANAJAS. 2019;34(2):117-2.
Online ISSN: 1308-8769