Research Article
BibTex RIS Cite

Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri

Year 2020, Volume: 35 Issue: 3, 446 - 455, 14.10.2020
https://doi.org/10.7161/omuanajas.790698

Abstract

Kuraklık, bitki büyümesini ve verimini olumsuz etkileyen bir abiyotik stres faktörüdür. Buğday gibi tahıllar kuraklık stresinden olumsuz etkilendiklerinden verim azalmaktadır. İyi bir ozmo-tolerant olan Glisin-Betain (GB) ozmotik stres koşullarında eksojen olarak uygulandığında yaprak dokularına kolaylıkla alınır, kloroplastlarda fotosentetik aktivite ve zar bütünlüğünün sürdürülmesini sağlar ve membran zararını azaltır. Ayrıca, K+ alınımını ve klorofil içeriğini artırır. Bu çalışmada 5 mM GB uygulamasının kuraklığa farklı toleransa sahip iki buğday çeşidinde (kurağa duyarlı Sultan-95, kurağa-dayanıklı Tosunbey) kök ve gövde uzunluğu, klorofil miktarı (SPAD), bağıl su içeriği, lipit peroksidasyon (TBARS), hücre zarı geçirgenliği (HZG) ve antioksidan savunma sistemi enzim aktiviteleri (peroksidaz (POX), askorbat peroksidaz (APX), glutatyon redüktaz (GR), katalaz (CAT)) üzerine etkisi araştırılmıştır.
Sonuçlarımıza göre, eksojen GB uygulaması ile her iki çeşit kuraklığa bağlı klorozisten ve kök uzunluğundaki inhibisyondan korunmuştur. Her iki çeşitte oksidatif stres nedeniyle kuraklıkla artan TBARS ve H2O2 miktarının eksojen GB uygulamasıyla azaldığı belirlenmiştir. Oksidatif stresin bastırılmasında, H2O2 detoksifikasyonunun Tosunbey çeşidinde POX aktivitelerindeki artış ile Sultan-95’te ise APX ve CAT aktivitelerindeki artış ile gerçekleştiği saptanmıştır. Sonuç olarak, eksojen GB uygulaması her iki buğday çeşidinde kuraklık stresiyle ortaya çıkan oksidatif zarardan korunma sağlamıştır.

Thanks

Dr. Belma ACAR

References

  • Ahmed, N., Zhang, Y., Li, K., Zhou, Y., Zhang, M., Li, Z., 2019. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop Journal, 7(5), 635-650. doi: https://doi.org/10.1016/j.cj.2019.03.004
  • Alves, A.A., Setter, T.L., 2004. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. Exp. Bot., 51 (3) (2004), pp. 259-271.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: ımproved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44,276-287. doi.org/10.1016/0003-2697(71)90370-8.
  • Bergmeyer, N., 1970. Methoden der enzymatischen analyse. Akademia Verlag, Berlin, Cilt 1:636-647.
  • Blum, A., 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ., 40 (1) (2017), pp. 4-10. Doi: 10.1111/pce.12800.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi.org/10.1016/0003-2697(76)90527-3.
  • Büyük İ., Semra-Aydın S., Aras S., 2012. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(2): 97-110. doi: 10.5505/TurkHijyen.2012.40316.
  • Cattivelli, L., Rizza, F., Badeck, F. W., 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research 105, 1–14. doi.org/10.1016/j.fcr.2007.07.004.
  • Cheeseman, J.M., 2006. Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany, 57, 2435–44 pp.
  • Chen, T.H.H., Murata, N., 2008. Glycinebetaine: an Effective Protectant Against Abiotic Stress in Plants, Trends Plant Sci, 13, 499–505.
  • Ciarmiello, L.F., Di Maro, A., Woodrow, P., Annunziata, M.G., Kafantaris, I., Mirto, A., Carillo, P., 2018. Unveiling the enigmatic structure of TdCMO transcripts in durum wheat. Agronomy, 8(11), 270. doi:10.3390/agronomy8110270.
  • Cummins, A.G., Roberts‐Thomson, I.C., 2009. Prevalence of celiac disease in the Asia–Pacific region. Journal of Gastroenterology and Hepatology, 24(8), 1347-1351. doi.10.1111/j.1440-1746.2009.05932.
  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F., 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57: 779–795. doi: 10.1007/s000180050041.
  • Demirbaş S., Acar O., 2008. Superoxide Dismutase and Peroxidase Activities from Antioxidative Enzymes in Helianthus annuus L. Roots During Orobanche cumana Wallr. Penetration. Fresenius Environ. Bull., 17 (8a): 1038-1044.
  • Dionisio-Sese, M. L., Tobita, S., 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135: 1-9. doi.org/10.1016/S0168-9452(98)00025-9.
  • Dolferus, R., Ji, X., Richards, R. A., 2011. Abiotic stress and control of grain number in cereals. Plant Science 181, 331–341. doi: 10.1016/j.plantsci.2011.05.015.
  • Dong, B., Zheng, X., Liu, H., Able, JA., Yang, H., Zhao, H., Zhang, M., Qiao, Y., Wang, Y., Liu, M., 2017. Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Frontiers in Plant Science. doi: 10.3389/fpls.2017.01008.
  • FAOSTAT., 2020. Food and agriculture organization of the united nations. Available from URL:http://www.fao.org/faostat/en/#data/QC (Erişim Tarihi: 26 Temmuz 2020).
  • Farooq, M., Hussain, M., Siddique, K. H. M.., 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sci 33, 331–349. doi.org/10.1080/07352689.2014.875291.
  • Foyer, C.H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133: 21-25.
  • Gadallah, M.A.A., 1999. Effects of proline and glycinebetaine on vicia faba response to salt stress. Biol. Plant. 42, 249–257. doi.org/10.1023/A:1002164719609.
  • Gençtan, T., Akar, T., Öktem, A., Soylu, S., Hurma, H., Balkan, A., Sürek, H., 2020. Tahıl üretimimizin mevcut durumu ve geleceği. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1, 371.
  • Hare, P.D., Cress, W.A., Van Staden, J., 1998. Dissecting the roles of osmolyte accumulation during stress. plant, Cell and Environment 21, 535–553. doi.org/10.1046/j.1365-3040.1998.00309.x.
  • Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., Venkataraman, G., 2018. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9, 985. doi: 10.3389/fpls.2018.00985.
  • Kacar, B., Katkat, A. V., Öztürk, Ş., 2002. Bitki Fizyolojisi. Uludağ Üniversitesi Güçlendirme Vakfı Yayın No: 198, Vipaş Yayın No:74., Bursa.
  • Kanner, J., Kinsella, J. E., 1983. Lipid deterioration ınitiated by phagocytic cells in muscle foods: β-carotene destruction by a myeloperoxidase-hydrogen peroxide halide system. Journal of Agricultural and Food Chemistry, 31,370-376. doi.org/10.1007/BF02534548.
  • Lascano, H.R., Antonicelli, G.E., Luna, C.M., Melchiorre, M.N., Gómez, L.D., Racca, R.W., Casano, L.M. 2001. Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Functional Plant Biology, 28(11), 1095-1102. https://doi.org/10.1071/PP01061.
  • Lıu, Y., Guo, X., Ma, M., Jıang, X., 2019. Effects of drought and rewaterıng on growth and physıologıcal characterıstıcs of maıze seedlıngs and regulatıon of root-sourced Aba. Agrıcultural Research In The Arıd Areas, 37(1), 187-193.
  • Ma, J., Li, R., Wang, H., Li, D., Wang, X., Zhang, Y., Zhen, W., Duan, H., Yan, G., Li, Y., 2017. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Frontiers in Plant Science 8, 592. doi.org/10.3389/fpls.2017.00592.
  • Madhava, R.K.V., Sresty, T.V.S., 2000. Antioxidative parameters in the seedlings of pigeonpea (cajanus cajan l. millspaugh) in response to zn and ni stresses. Plant Sci., 157: 113-128. doi: 10.1016/s0168-9452(00)00273-9.
  • Mickelbart, M.V., Hasegawa, P.M., Bailey-Serres, J., 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16: 237–251. doi: 10.1038 / nr.
  • Moller, I.M., Jensen, P.E., Hansson, A., 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 58, 459-81. doi: 10.1146/annurev.arplant.58.032806.103946.
  • Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M. D., Tsilo, T. J., 2016. Breeding wheat for drought tolerance: progress and technologies. Journal of Integrative Agriculture 15, 935–943. doi: 10.3389/fpls.2016.01276.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is Scavenged by ascorbate-specific peroxidase in spinach chloroplasts plant. Cell Physiol, 22(3), 867-880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Peryea, F.J., Kammereck, R., 1997. Use of Minolta Spad‐502 chlorophyll meter to quantify the effectiveness of mid‐summer trunk injection of iron on chlorotic pear trees. Journal of plant Nutrition, 20(11):1457-1463. doi.org/10.1080/01904169709365348.
  • Shanazari, M., Golkar, P., Mirmohammady Maibody, A.M., 2018. Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science, 64(14), 2005-2018. doi: 10.1080/03650340.2018.1472377.
  • Smart, R.E., Bingham, G.E., 1974. Rapid estimates of relative water content. plant physiology, 53(2):258 260. doi: 10.1104/pp.53.2.258.
  • TMO., 2018. Toprak mahsulleri ofisi. Available from URL: http://www.tmo.gov.tr/Upload/Document/hububatsektorraporu2018.pdf (Erişim Tarihi: 26 Temmuz 2020).
  • Verbruggen, N., Hermans, C., 2008..Proline accumulation in plants: a review Amino Acids, 35 (4) (2008), pp. 753-759. doi: 10.1007/s00726-008-0061-6.
Year 2020, Volume: 35 Issue: 3, 446 - 455, 14.10.2020
https://doi.org/10.7161/omuanajas.790698

Abstract

Drought is an abiotic stress factor that negatively affects plant growth and productivity. Drought stress reduces the yield of cereals such as wheat. Glycine-Betaine (GB), which is a good osmo-tolerant, is easily absorbed into leaf tissues when applied exogenously under osmotic stress conditions. Thus, it maintains photosynthetic activity and membrane integrity in chloroplasts and reduces membrane damage. In this study, root and stem length, chlorophyll content (SPAD), relative water content, lipid peroxidation (TBARS), cell membrane permeability (HZG), hydrogen peroxide (H2O2) and antioxidant defense system enzyme activities (peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT)) were investigated in two wheat varieties (drought tolerant, Sultan-95; drought-resistant, Tosunbey) of 5 mM GB application. According to our results, both varieties were protected from drought-related chlorosis and root length inhibition with exogenous GB application. It was determined that the amount of TBARS and H2O2 increased with drought-dependent oxidative stress in both wheat varieties decreased with exogenous GB application. In reducing oxidative stress, it was determined that H2O2 detoxification occurred with the increase in POX activities in Tosunbey variety and with the increase in APX and CAT activities in Sultan-95. As a result, exogenous GB application provided a protection from oxidative damage caused by drought stress in both wheat varieties.

References

  • Ahmed, N., Zhang, Y., Li, K., Zhou, Y., Zhang, M., Li, Z., 2019. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop Journal, 7(5), 635-650. doi: https://doi.org/10.1016/j.cj.2019.03.004
  • Alves, A.A., Setter, T.L., 2004. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ. Exp. Bot., 51 (3) (2004), pp. 259-271.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: ımproved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44,276-287. doi.org/10.1016/0003-2697(71)90370-8.
  • Bergmeyer, N., 1970. Methoden der enzymatischen analyse. Akademia Verlag, Berlin, Cilt 1:636-647.
  • Blum, A., 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ., 40 (1) (2017), pp. 4-10. Doi: 10.1111/pce.12800.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi.org/10.1016/0003-2697(76)90527-3.
  • Büyük İ., Semra-Aydın S., Aras S., 2012. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69(2): 97-110. doi: 10.5505/TurkHijyen.2012.40316.
  • Cattivelli, L., Rizza, F., Badeck, F. W., 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research 105, 1–14. doi.org/10.1016/j.fcr.2007.07.004.
  • Cheeseman, J.M., 2006. Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany, 57, 2435–44 pp.
  • Chen, T.H.H., Murata, N., 2008. Glycinebetaine: an Effective Protectant Against Abiotic Stress in Plants, Trends Plant Sci, 13, 499–505.
  • Ciarmiello, L.F., Di Maro, A., Woodrow, P., Annunziata, M.G., Kafantaris, I., Mirto, A., Carillo, P., 2018. Unveiling the enigmatic structure of TdCMO transcripts in durum wheat. Agronomy, 8(11), 270. doi:10.3390/agronomy8110270.
  • Cummins, A.G., Roberts‐Thomson, I.C., 2009. Prevalence of celiac disease in the Asia–Pacific region. Journal of Gastroenterology and Hepatology, 24(8), 1347-1351. doi.10.1111/j.1440-1746.2009.05932.
  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F., 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57: 779–795. doi: 10.1007/s000180050041.
  • Demirbaş S., Acar O., 2008. Superoxide Dismutase and Peroxidase Activities from Antioxidative Enzymes in Helianthus annuus L. Roots During Orobanche cumana Wallr. Penetration. Fresenius Environ. Bull., 17 (8a): 1038-1044.
  • Dionisio-Sese, M. L., Tobita, S., 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135: 1-9. doi.org/10.1016/S0168-9452(98)00025-9.
  • Dolferus, R., Ji, X., Richards, R. A., 2011. Abiotic stress and control of grain number in cereals. Plant Science 181, 331–341. doi: 10.1016/j.plantsci.2011.05.015.
  • Dong, B., Zheng, X., Liu, H., Able, JA., Yang, H., Zhao, H., Zhang, M., Qiao, Y., Wang, Y., Liu, M., 2017. Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Frontiers in Plant Science. doi: 10.3389/fpls.2017.01008.
  • FAOSTAT., 2020. Food and agriculture organization of the united nations. Available from URL:http://www.fao.org/faostat/en/#data/QC (Erişim Tarihi: 26 Temmuz 2020).
  • Farooq, M., Hussain, M., Siddique, K. H. M.., 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sci 33, 331–349. doi.org/10.1080/07352689.2014.875291.
  • Foyer, C.H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133: 21-25.
  • Gadallah, M.A.A., 1999. Effects of proline and glycinebetaine on vicia faba response to salt stress. Biol. Plant. 42, 249–257. doi.org/10.1023/A:1002164719609.
  • Gençtan, T., Akar, T., Öktem, A., Soylu, S., Hurma, H., Balkan, A., Sürek, H., 2020. Tahıl üretimimizin mevcut durumu ve geleceği. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1, 371.
  • Hare, P.D., Cress, W.A., Van Staden, J., 1998. Dissecting the roles of osmolyte accumulation during stress. plant, Cell and Environment 21, 535–553. doi.org/10.1046/j.1365-3040.1998.00309.x.
  • Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., Venkataraman, G., 2018. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9, 985. doi: 10.3389/fpls.2018.00985.
  • Kacar, B., Katkat, A. V., Öztürk, Ş., 2002. Bitki Fizyolojisi. Uludağ Üniversitesi Güçlendirme Vakfı Yayın No: 198, Vipaş Yayın No:74., Bursa.
  • Kanner, J., Kinsella, J. E., 1983. Lipid deterioration ınitiated by phagocytic cells in muscle foods: β-carotene destruction by a myeloperoxidase-hydrogen peroxide halide system. Journal of Agricultural and Food Chemistry, 31,370-376. doi.org/10.1007/BF02534548.
  • Lascano, H.R., Antonicelli, G.E., Luna, C.M., Melchiorre, M.N., Gómez, L.D., Racca, R.W., Casano, L.M. 2001. Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Functional Plant Biology, 28(11), 1095-1102. https://doi.org/10.1071/PP01061.
  • Lıu, Y., Guo, X., Ma, M., Jıang, X., 2019. Effects of drought and rewaterıng on growth and physıologıcal characterıstıcs of maıze seedlıngs and regulatıon of root-sourced Aba. Agrıcultural Research In The Arıd Areas, 37(1), 187-193.
  • Ma, J., Li, R., Wang, H., Li, D., Wang, X., Zhang, Y., Zhen, W., Duan, H., Yan, G., Li, Y., 2017. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Frontiers in Plant Science 8, 592. doi.org/10.3389/fpls.2017.00592.
  • Madhava, R.K.V., Sresty, T.V.S., 2000. Antioxidative parameters in the seedlings of pigeonpea (cajanus cajan l. millspaugh) in response to zn and ni stresses. Plant Sci., 157: 113-128. doi: 10.1016/s0168-9452(00)00273-9.
  • Mickelbart, M.V., Hasegawa, P.M., Bailey-Serres, J., 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16: 237–251. doi: 10.1038 / nr.
  • Moller, I.M., Jensen, P.E., Hansson, A., 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 58, 459-81. doi: 10.1146/annurev.arplant.58.032806.103946.
  • Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M. D., Tsilo, T. J., 2016. Breeding wheat for drought tolerance: progress and technologies. Journal of Integrative Agriculture 15, 935–943. doi: 10.3389/fpls.2016.01276.
  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is Scavenged by ascorbate-specific peroxidase in spinach chloroplasts plant. Cell Physiol, 22(3), 867-880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Peryea, F.J., Kammereck, R., 1997. Use of Minolta Spad‐502 chlorophyll meter to quantify the effectiveness of mid‐summer trunk injection of iron on chlorotic pear trees. Journal of plant Nutrition, 20(11):1457-1463. doi.org/10.1080/01904169709365348.
  • Shanazari, M., Golkar, P., Mirmohammady Maibody, A.M., 2018. Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science, 64(14), 2005-2018. doi: 10.1080/03650340.2018.1472377.
  • Smart, R.E., Bingham, G.E., 1974. Rapid estimates of relative water content. plant physiology, 53(2):258 260. doi: 10.1104/pp.53.2.258.
  • TMO., 2018. Toprak mahsulleri ofisi. Available from URL: http://www.tmo.gov.tr/Upload/Document/hububatsektorraporu2018.pdf (Erişim Tarihi: 26 Temmuz 2020).
  • Verbruggen, N., Hermans, C., 2008..Proline accumulation in plants: a review Amino Acids, 35 (4) (2008), pp. 753-759. doi: 10.1007/s00726-008-0061-6.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Okan Acar 0000-0002-9818-8827

Müge Teker 0000-0001-7657-9811

Eda Günay 0000-0002-6616-6228

Gamze Baltacıer 0000-0001-9299-3115

Publication Date October 14, 2020
Acceptance Date September 8, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Acar, O., Teker, M., Günay, E., Baltacıer, G. (2020). Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. Anadolu Tarım Bilimleri Dergisi, 35(3), 446-455. https://doi.org/10.7161/omuanajas.790698
AMA Acar O, Teker M, Günay E, Baltacıer G. Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. ANAJAS. October 2020;35(3):446-455. doi:10.7161/omuanajas.790698
Chicago Acar, Okan, Müge Teker, Eda Günay, and Gamze Baltacıer. “Kuraklık Stresi altındaki buğdayda Eksojen Glisin Betain’in Fizyolojik Ve Biyokimyasal Etkileri”. Anadolu Tarım Bilimleri Dergisi 35, no. 3 (October 2020): 446-55. https://doi.org/10.7161/omuanajas.790698.
EndNote Acar O, Teker M, Günay E, Baltacıer G (October 1, 2020) Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. Anadolu Tarım Bilimleri Dergisi 35 3 446–455.
IEEE O. Acar, M. Teker, E. Günay, and G. Baltacıer, “Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri”, ANAJAS, vol. 35, no. 3, pp. 446–455, 2020, doi: 10.7161/omuanajas.790698.
ISNAD Acar, Okan et al. “Kuraklık Stresi altındaki buğdayda Eksojen Glisin Betain’in Fizyolojik Ve Biyokimyasal Etkileri”. Anadolu Tarım Bilimleri Dergisi 35/3 (October 2020), 446-455. https://doi.org/10.7161/omuanajas.790698.
JAMA Acar O, Teker M, Günay E, Baltacıer G. Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. ANAJAS. 2020;35:446–455.
MLA Acar, Okan et al. “Kuraklık Stresi altındaki buğdayda Eksojen Glisin Betain’in Fizyolojik Ve Biyokimyasal Etkileri”. Anadolu Tarım Bilimleri Dergisi, vol. 35, no. 3, 2020, pp. 446-55, doi:10.7161/omuanajas.790698.
Vancouver Acar O, Teker M, Günay E, Baltacıer G. Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. ANAJAS. 2020;35(3):446-55.
Online ISSN: 1308-8769