Research Article
BibTex RIS Cite

Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits

Year 2023, Volume: 38 Issue: 1, 131 - 144, 28.02.2023
https://doi.org/10.7161/omuanajas.1128834

Abstract

The study was conducted to highlight differences of colored corns according to bio ─ active compounds and quality traits in Selcuk University, Agriculture Faculty, Crop Science Department, Konya/Turkey. At the study we attempted to explain the impacts of grain color (white, yellow, red, and purple) factor on bio ─ active compounds as total antioxidant activity, total phenolic compounds, total flavonoids, total anthocyanin content, total carotenoids, and some quality traits as grain fat content, grain protein content, grain starch content and amylose ─ amylopectin rate. All analysis was practiced at three coincidently chosen samples for each trait. Wide and significant variations were observed among the genotypes at all traits except grain fat content feature. While purple corn had the highest values at six (total antioxidant activity, total phenolic compounds, total flavonoids, total anthocyanin content, grain fat content and grain starch content) of nine characters; the red and the white ones had the highest values one of [total carotenoids (red corn), grain protein content (white corn)] nine characters in the study. Results of the study showed that grain color changes had remarkable effects on bio ─ activate contents and some quality features and exhibited possibility of using colored corns as bio – active resources in human and animal nutrition.

Supporting Institution

Selçuk Üniversitesi BAP Koordinatörlüğü

Project Number

20401021

Thanks

This study was supported by SUSRP (Selcuk University Scientific Research Projects) with 20401021 codded project.

References

  • Abotaleb, M., Samuel Mathew, S., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., Büsselberg, D., 2019. Flavonoids in cancer and apoptosis. Cancers, 11(1): 1-28.
  • Alan, Ö., Kınacı, E., Kınacı, G., Başçiftçi, Z. B., Evrenosoğlu, Y., Sönmez, K., Kutlu, I., 2015. Determination of variations in sweet corn kernel quality in relation to post harvest usage. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 9(2): 49-58.
  • Ashokkumar, K., Govindaraj, M., Karthikeyan, A., Shobhana, V., Warkentin, T., 2020. Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Frontiers in Genetics, 11(414): 1-17.
  • Cervilla, L.M., Blasco, B., Rios, J. J., Rosales, M. A., Rodriguez, E. S., Rubio-Wilhelmi, M., Romero, L., Ruiz, J. M., 2012. Parameters symptomatic for boron toxicity in leaves of tomato plants. J. Bot., 2012: 1-17.
  • Cevallos-Casals, B., Cisneros-Zevallos, L., 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. Journal of Agricultural and Food Chemistry, 51(11): 3313-3319.
  • Chalker – Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1): 1-9.
  • Chen, P., Zhang, Y., Qiao, Q., Tao, X., Liu, P., Xiw, F., 2021. Comparison of the structure and properties of hydroxypropylated acid-hydrolysed maize starches with different amylose/amylopectin contents. Food Hydrocolloids, 110(2021): 106-134.
  • Cuevas Montilla, E., Hillebrand, S., Antezana, A., Winterhalter, P., 2011. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry, 59(13): 7068-7074.
  • Davey, M., Mellidou, I., Keulemans, W., 2009. Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa. Journal of Chromatography A, 1216(30): 5759-5762.
  • Fei, L., Sigurdson, G., Giusti, M., 2017. Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 16(2): 234-246.
  • Fraser, P., Bramley, P., 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3): 228-265.
  • Galicia, L., Nurit, E., Rosales, A., Palacios – Rojas, N., 2008. Amylose determination in maize grains. Maize Nutirition Quality and Plant Tissue Analysis Laboratory, Laboratory Protocols. CIMMYT International Maize and Wheat Improvement Center Publishes, Mexico.
  • Gonzalez – Manzano, S., Perez – Alonso, J., Salinas – Moreno, Y., 2008. Flavanol‐anthocyanin pigments in corn: NMR characterisation purple corn phenolic profile and assessment 213 and presence in diferent purple corn varieties. Journal of Food Composition and Analysis, 21(7): 521-526.
  • Halliwell, B., Gutteridge, J., Cross, C., 1992. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119(6): 598-620.
  • Hogg, A., Martin, J., Manthey, F.A., Giroux, M., 2015. Nutritional and quality traits of pasta made from SSIIa null high‐amylose durum wheat. Cereal Chemistry, 92(4): 395-400.
  • Jothy, S., Zuraini, Z., Sasidhara, S., 2011. Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitiory activities of Cassia fistula seeds extract. Journal of Medicinal Plants Research, 5(10): 1941-1947.
  • Kahrıman, F., Onaç, İ., Mert, T., F, Öner, F., Egesel, C., 2019. Determination of carotenoid and tocopherol content in maize flour and oil samples using near-infrared spectroscopy. Spectroscopy Letters, 52(8): 473-481.
  • Kahrıman, F., Sütal, A., Topçakıl, M., Gezer, Ö., 2021. Prototype near-infrared (NIR) reflectance spectrometer for the analysis of maize flour. Instrumentation Science & Technology, 49(5): 521-531.
  • Kasote, D., Katyare, S., Hegde, M., Bae, H., 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982-991.
  • Khampas, S., Lertrat, K., Lomthaisong, K., Suriharn, B., 2013. Variability in phytochemicals and antioxidant activity in corn at immaturity and physiological maturity stages. International Food Research Journal, 20(6): 3149-3157.
  • Khan, A., Asad, M., Azhar, I., Mahmood, R., 2014. Estimation of protein, carbohydrate, starch and oil contents of indigenous maize (Zea mays L.) germplasm. European Academic Research, 2(4): 5230-5242.
  • Kim, T., Kim, J. K., Kang, Y. H., Lee, J. Y., Kang, I. J., Lim S. S., 2013. Aldose reductase inhibitory activity of compounds from Zea mays L. BioMed Research International, 2013 (727143): 1-8.
  • Konrade, D., Klava, D., 2017. Total content of phenolics and antioxidant activity in crispbreads with plant by-product addition. Rural Sustainability Research, 38(333): 24-31.
  • Leticia, X., Oliart-Ros, R. M., Valerio-Alfaro, G., Lee, C. H., Parkin, K. L., Garcia, H. S., 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Science and Technology, 42(6): 1187-1192.
  • Li, C. Y., Kim, H. W., Won, S. R., Min, H. K., Park, K. J., Park, J. Y., Ahn, M. S., Rhee, H. I., 2008. Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry, 56(23): 11413-11416.
  • Liyama, K., Lam, T., Stone, B., 1994. Covalent cross‐links in the cell wall. Plant Physiology, 104(2): 315-320.
  • Lobo, V., Patil, A., Phatak, A., Chandra, N., 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8): 118-128.
  • Long, N., Suzuki, S., Sato, S., Naiki-Ito, A., Sakatani, K., Shirai, T., Takahashi, S., 2013. Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways. Cancer Sci. 104(3): 298-303.
  • Magaña-Cerino, J., Peniche-Pavía, H., Tiessen, A., Gurrola-Díaz, C., 2020. Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress – A Review. Polish Journal of Food and Nutrition Sciences, 70(2): 85-99.
  • Martínez-Martínez, R., Vera-Guzman, A. M., Chavez-Servia, J. L., Aquino-Balonas, E. N., Carrillo-Rodriguez, J. C., Perez-Herrare, A., 2019. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia, 44(9): 549-556.
  • Méndez-Lagunas, L., Cruz-Gracida, M., Barriada-Bernal, L., Rodríguez-Méndez, L., 2020. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. Journal of Food Science and Technology, 57(12): 4688-4696.
  • Messias, R., Galli, V., Dos Anjos e Silva, S., Rombaldi, C., 2014. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients, 6(2): 546-563.
  • Mohsen, S., Ammar, A., 2005. Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(2009): 595-598.
  • Navarro, A., Torres, A., Fernández-Aulis, F., Peña, C., 2018. Bioactive compounds in pigmented maize. Corn-Production and Human Health in Changing Climate: 69-91.
  • Özdemir, E., Sade, B., 2019. Correlation of some of agro - morphological and physiological traits in maize inbred lines developed in Konya conditions. Anadolu J Agr Sci., 34(2019): 73-77.
  • Pandey, K., Rizvi, S., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5): 270-278.
  • Radha, B. N., Channakeshava, B. C., Hullur, N., Pandurange, G. K. T., Bhanuprakash, K., Ramachandrappa, B. K., Munirajappa, R., 2013. Effect of seed ageing on protein quality and quantity in maize. International Journal of Bioassay, 3(1): 1708-1713.
  • Rocha, A. S., Rocha, E. K., Alves, L. M., Moraes, B. A., Carvalho de Castro, T., Albarello, N., Siöoes-Gurgel, C., 2015. Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). J. Plant Biochem. Biotechnol., 24(1): 105-113.
  • Shevkani, K., Singh, N., Bajaj, R., Kaur, A., 2017. Wheat starch production, structure, functionality and applications—a review. International Journal of Food Science & Technology, 52(1): 38-58.
  • Smuda, S., Mohsen, S., Olsen, K., Aly, M., 2018. Bioactive compounds and antioxidant activities of some cereal milling by-products. Journal of Food Science and Technology, 55(3): 1134-1142.
  • Takanori, T., Watanabe, M., Oshima, K., Narinobu, S., Choi, Sang-Won, Kawakishi, S., Osawa, T., 1994. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-.beta.-D-glucoside and cyanidin. J. Agric. Food Chem., 42(11): 2407-2410.
  • Tian, X. Z., Paengkoum, P., Paengkoum, S., Chumpawadee, S., Ban, C., Thongpea, S., 2019. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 102(1): 413-418.
  • Trono, D., 2019. Carotenoids in cereal food crops: composition and retention throughout grain storage and food processing. Plants, 8(12): 1-21.
  • Urias-Lugo, D., Heredia, J., Serna-Saldivar, S., Muy-Rangel, M., Valdez-Torres, J., 2015. Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-Journal of Food, 13(3): 336-339.
  • Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., Prior, R. L., 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11): 4069-4075.
  • Xie, F., Zhang, H., Xia, Y., Ai, L., 2020. Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocolloids, 105(105854): 1-13.
  • Yalçın, E., Masatçıoğlu, M., Cındık, B., 2020. Normal, waxy and high-amylose starches and their functional properties in foods. Gıda, 45(6): 1261-1271.
  • Yang, Z., Zhai, W., 2010. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science & Emerging Technologies, 11(1): 169-176.
  • Zilic, S., Serpen, A., Akıllıoglu, G., Gokmen, V., Vancetovic, J., 2012. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 2012(60): 1224-1231.

Beyaz, sarı, kırmızı ve mor renkli mısırların (Zea mays indentata L.) biyo ─ aktif bileşenler ve kalite özellikleri bakımından karakterizasyonu

Year 2023, Volume: 38 Issue: 1, 131 - 144, 28.02.2023
https://doi.org/10.7161/omuanajas.1128834

Abstract

Çalışma renkli mısırların bio ─ aktif bileşenler ve kalite özellikleri bakımından farklılıklarını belirlemek amacıyla Selçuk Üniversitesi, Ziraat Fakültesi, Tarla Bitkileri Bölümü, Konya/Türkiye’ de yürütülmüştür. Bu çalışmada mısırda tane rengi faktörünün (beyaz, sarı, kırmızı ve mor) total antioksidanlar, total fenolik bileşenler, total flavanoidler, total antosiyaninler, total karotenoidler gibi biyo ─ aktif bileşenler ile, tane yağ içeriği, tane protein içeriği, nişasta içeriği ve amiloz ─ amilopektin oranı gibi kalite özelliklerine etkileri belirlenmiştir. Tüm analizler her bir analiz için üç kez tesadüfen seçilmiş örneklerde yapılmıştır. Tane yağ içeriği karakteri dışındaki tüm özelliklerde istatistik olarak önemli varyasyonlar görülmüştür. Mor mısır dokuz karakterin altısında (total antioksidan aktivitesi, total fenolik bileşenler, total flavonoid, total antosiyanin içeriği, tane yağ içeriği ve tane nişasta içeriği) en yüksek değerlere sahip olurken; kırmızı ve beyaz renkli mısırlar dokuz karakterin birinde en yüksek değere sahip olmuşlardır [total karotenoid (kırmızı mısır); tane protein içeriği (beyaz mısır)]. Çalışmanın sonuçları tane rengindeki farklılığın biyo ─ aktif bileşenler ve bazı kalite özelliklerinde önemli değişikliklere neden olduğunu; renkli mısırların insan ve hayvan beslenmesinde biyo ─ aktif kaynaklar olarak da değerlendirilmesinin mümkün olabileceğini göstermiştir.

Project Number

20401021

References

  • Abotaleb, M., Samuel Mathew, S., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., Büsselberg, D., 2019. Flavonoids in cancer and apoptosis. Cancers, 11(1): 1-28.
  • Alan, Ö., Kınacı, E., Kınacı, G., Başçiftçi, Z. B., Evrenosoğlu, Y., Sönmez, K., Kutlu, I., 2015. Determination of variations in sweet corn kernel quality in relation to post harvest usage. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 9(2): 49-58.
  • Ashokkumar, K., Govindaraj, M., Karthikeyan, A., Shobhana, V., Warkentin, T., 2020. Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Frontiers in Genetics, 11(414): 1-17.
  • Cervilla, L.M., Blasco, B., Rios, J. J., Rosales, M. A., Rodriguez, E. S., Rubio-Wilhelmi, M., Romero, L., Ruiz, J. M., 2012. Parameters symptomatic for boron toxicity in leaves of tomato plants. J. Bot., 2012: 1-17.
  • Cevallos-Casals, B., Cisneros-Zevallos, L., 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. Journal of Agricultural and Food Chemistry, 51(11): 3313-3319.
  • Chalker – Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1): 1-9.
  • Chen, P., Zhang, Y., Qiao, Q., Tao, X., Liu, P., Xiw, F., 2021. Comparison of the structure and properties of hydroxypropylated acid-hydrolysed maize starches with different amylose/amylopectin contents. Food Hydrocolloids, 110(2021): 106-134.
  • Cuevas Montilla, E., Hillebrand, S., Antezana, A., Winterhalter, P., 2011. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry, 59(13): 7068-7074.
  • Davey, M., Mellidou, I., Keulemans, W., 2009. Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa. Journal of Chromatography A, 1216(30): 5759-5762.
  • Fei, L., Sigurdson, G., Giusti, M., 2017. Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 16(2): 234-246.
  • Fraser, P., Bramley, P., 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3): 228-265.
  • Galicia, L., Nurit, E., Rosales, A., Palacios – Rojas, N., 2008. Amylose determination in maize grains. Maize Nutirition Quality and Plant Tissue Analysis Laboratory, Laboratory Protocols. CIMMYT International Maize and Wheat Improvement Center Publishes, Mexico.
  • Gonzalez – Manzano, S., Perez – Alonso, J., Salinas – Moreno, Y., 2008. Flavanol‐anthocyanin pigments in corn: NMR characterisation purple corn phenolic profile and assessment 213 and presence in diferent purple corn varieties. Journal of Food Composition and Analysis, 21(7): 521-526.
  • Halliwell, B., Gutteridge, J., Cross, C., 1992. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119(6): 598-620.
  • Hogg, A., Martin, J., Manthey, F.A., Giroux, M., 2015. Nutritional and quality traits of pasta made from SSIIa null high‐amylose durum wheat. Cereal Chemistry, 92(4): 395-400.
  • Jothy, S., Zuraini, Z., Sasidhara, S., 2011. Phytochemicals screening, DPPH free radical scavenging and xanthine oxidase inhibitiory activities of Cassia fistula seeds extract. Journal of Medicinal Plants Research, 5(10): 1941-1947.
  • Kahrıman, F., Onaç, İ., Mert, T., F, Öner, F., Egesel, C., 2019. Determination of carotenoid and tocopherol content in maize flour and oil samples using near-infrared spectroscopy. Spectroscopy Letters, 52(8): 473-481.
  • Kahrıman, F., Sütal, A., Topçakıl, M., Gezer, Ö., 2021. Prototype near-infrared (NIR) reflectance spectrometer for the analysis of maize flour. Instrumentation Science & Technology, 49(5): 521-531.
  • Kasote, D., Katyare, S., Hegde, M., Bae, H., 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982-991.
  • Khampas, S., Lertrat, K., Lomthaisong, K., Suriharn, B., 2013. Variability in phytochemicals and antioxidant activity in corn at immaturity and physiological maturity stages. International Food Research Journal, 20(6): 3149-3157.
  • Khan, A., Asad, M., Azhar, I., Mahmood, R., 2014. Estimation of protein, carbohydrate, starch and oil contents of indigenous maize (Zea mays L.) germplasm. European Academic Research, 2(4): 5230-5242.
  • Kim, T., Kim, J. K., Kang, Y. H., Lee, J. Y., Kang, I. J., Lim S. S., 2013. Aldose reductase inhibitory activity of compounds from Zea mays L. BioMed Research International, 2013 (727143): 1-8.
  • Konrade, D., Klava, D., 2017. Total content of phenolics and antioxidant activity in crispbreads with plant by-product addition. Rural Sustainability Research, 38(333): 24-31.
  • Leticia, X., Oliart-Ros, R. M., Valerio-Alfaro, G., Lee, C. H., Parkin, K. L., Garcia, H. S., 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Science and Technology, 42(6): 1187-1192.
  • Li, C. Y., Kim, H. W., Won, S. R., Min, H. K., Park, K. J., Park, J. Y., Ahn, M. S., Rhee, H. I., 2008. Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry, 56(23): 11413-11416.
  • Liyama, K., Lam, T., Stone, B., 1994. Covalent cross‐links in the cell wall. Plant Physiology, 104(2): 315-320.
  • Lobo, V., Patil, A., Phatak, A., Chandra, N., 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8): 118-128.
  • Long, N., Suzuki, S., Sato, S., Naiki-Ito, A., Sakatani, K., Shirai, T., Takahashi, S., 2013. Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways. Cancer Sci. 104(3): 298-303.
  • Magaña-Cerino, J., Peniche-Pavía, H., Tiessen, A., Gurrola-Díaz, C., 2020. Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress – A Review. Polish Journal of Food and Nutrition Sciences, 70(2): 85-99.
  • Martínez-Martínez, R., Vera-Guzman, A. M., Chavez-Servia, J. L., Aquino-Balonas, E. N., Carrillo-Rodriguez, J. C., Perez-Herrare, A., 2019. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia, 44(9): 549-556.
  • Méndez-Lagunas, L., Cruz-Gracida, M., Barriada-Bernal, L., Rodríguez-Méndez, L., 2020. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. Journal of Food Science and Technology, 57(12): 4688-4696.
  • Messias, R., Galli, V., Dos Anjos e Silva, S., Rombaldi, C., 2014. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients, 6(2): 546-563.
  • Mohsen, S., Ammar, A., 2005. Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(2009): 595-598.
  • Navarro, A., Torres, A., Fernández-Aulis, F., Peña, C., 2018. Bioactive compounds in pigmented maize. Corn-Production and Human Health in Changing Climate: 69-91.
  • Özdemir, E., Sade, B., 2019. Correlation of some of agro - morphological and physiological traits in maize inbred lines developed in Konya conditions. Anadolu J Agr Sci., 34(2019): 73-77.
  • Pandey, K., Rizvi, S., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5): 270-278.
  • Radha, B. N., Channakeshava, B. C., Hullur, N., Pandurange, G. K. T., Bhanuprakash, K., Ramachandrappa, B. K., Munirajappa, R., 2013. Effect of seed ageing on protein quality and quantity in maize. International Journal of Bioassay, 3(1): 1708-1713.
  • Rocha, A. S., Rocha, E. K., Alves, L. M., Moraes, B. A., Carvalho de Castro, T., Albarello, N., Siöoes-Gurgel, C., 2015. Production and optimization through elicitation of carotenoid pigments in the in vitro cultures of Cleome rosea Vahl (Cleomaceae). J. Plant Biochem. Biotechnol., 24(1): 105-113.
  • Shevkani, K., Singh, N., Bajaj, R., Kaur, A., 2017. Wheat starch production, structure, functionality and applications—a review. International Journal of Food Science & Technology, 52(1): 38-58.
  • Smuda, S., Mohsen, S., Olsen, K., Aly, M., 2018. Bioactive compounds and antioxidant activities of some cereal milling by-products. Journal of Food Science and Technology, 55(3): 1134-1142.
  • Takanori, T., Watanabe, M., Oshima, K., Narinobu, S., Choi, Sang-Won, Kawakishi, S., Osawa, T., 1994. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-.beta.-D-glucoside and cyanidin. J. Agric. Food Chem., 42(11): 2407-2410.
  • Tian, X. Z., Paengkoum, P., Paengkoum, S., Chumpawadee, S., Ban, C., Thongpea, S., 2019. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 102(1): 413-418.
  • Trono, D., 2019. Carotenoids in cereal food crops: composition and retention throughout grain storage and food processing. Plants, 8(12): 1-21.
  • Urias-Lugo, D., Heredia, J., Serna-Saldivar, S., Muy-Rangel, M., Valdez-Torres, J., 2015. Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-Journal of Food, 13(3): 336-339.
  • Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., Prior, R. L., 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11): 4069-4075.
  • Xie, F., Zhang, H., Xia, Y., Ai, L., 2020. Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocolloids, 105(105854): 1-13.
  • Yalçın, E., Masatçıoğlu, M., Cındık, B., 2020. Normal, waxy and high-amylose starches and their functional properties in foods. Gıda, 45(6): 1261-1271.
  • Yang, Z., Zhai, W., 2010. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science & Emerging Technologies, 11(1): 169-176.
  • Zilic, S., Serpen, A., Akıllıoglu, G., Gokmen, V., Vancetovic, J., 2012. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 2012(60): 1224-1231.
There are 49 citations in total.

Details

Primary Language English
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Elif Özdemir 0000-0003-3153-1739

Rahime Cengiz 0000-0001-6355-7496

Bayram Sade 0000-0003-3245-9919

Project Number 20401021
Publication Date February 28, 2023
Acceptance Date December 1, 2022
Published in Issue Year 2023 Volume: 38 Issue: 1

Cite

APA Özdemir, E., Cengiz, R., & Sade, B. (2023). Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits. Anadolu Tarım Bilimleri Dergisi, 38(1), 131-144. https://doi.org/10.7161/omuanajas.1128834
AMA Özdemir E, Cengiz R, Sade B. Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits. ANAJAS. February 2023;38(1):131-144. doi:10.7161/omuanajas.1128834
Chicago Özdemir, Elif, Rahime Cengiz, and Bayram Sade. “Characterization of White, Yellow, Red, and Purple Colored Corns (Zea Mays Indentata L.) According to Bio ─ Active Compounds and Quality Traits”. Anadolu Tarım Bilimleri Dergisi 38, no. 1 (February 2023): 131-44. https://doi.org/10.7161/omuanajas.1128834.
EndNote Özdemir E, Cengiz R, Sade B (February 1, 2023) Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits. Anadolu Tarım Bilimleri Dergisi 38 1 131–144.
IEEE E. Özdemir, R. Cengiz, and B. Sade, “Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits”, ANAJAS, vol. 38, no. 1, pp. 131–144, 2023, doi: 10.7161/omuanajas.1128834.
ISNAD Özdemir, Elif et al. “Characterization of White, Yellow, Red, and Purple Colored Corns (Zea Mays Indentata L.) According to Bio ─ Active Compounds and Quality Traits”. Anadolu Tarım Bilimleri Dergisi 38/1 (February 2023), 131-144. https://doi.org/10.7161/omuanajas.1128834.
JAMA Özdemir E, Cengiz R, Sade B. Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits. ANAJAS. 2023;38:131–144.
MLA Özdemir, Elif et al. “Characterization of White, Yellow, Red, and Purple Colored Corns (Zea Mays Indentata L.) According to Bio ─ Active Compounds and Quality Traits”. Anadolu Tarım Bilimleri Dergisi, vol. 38, no. 1, 2023, pp. 131-44, doi:10.7161/omuanajas.1128834.
Vancouver Özdemir E, Cengiz R, Sade B. Characterization of white, yellow, red, and purple colored corns (Zea mays indentata L.) according to bio ─ active compounds and quality traits. ANAJAS. 2023;38(1):131-44.
Online ISSN: 1308-8769