Araştırma Makalesi
BibTex RIS Kaynak Göster

Enginarda [Cynara cardunculus var. scolymus (L.) Fiori] Kuraklık Stresi Ajanı Olarak Mannitol Kullanımı

Yıl 2023, Cilt: 38 Sayı: 3, 637 - 656, 26.10.2023
https://doi.org/10.7161/omuanajas.1353386

Öz

Asteraceae familyasının önemli üyelerinden biri olan enginar [Cynara cardunculus var. scolymus (L.) Fiori], eski çağlardan beri mutfak ve sağlık açısından faydaları nedeniyle insanlar tarafından tüketilmektedir. Küresel tarımsal üretim ve üretim verimliliği, başta kuraklık olmak üzere olumsuz çevre koşulları nedeniyle sekteye uğramaktadır. Bitki verimliliğini olumsuz etkileyen kuraklık stresine dayanıklı bitkilerin kullanılması, ıslah çalışmalarının teşvik edilmesi açısından büyük önem taşımaktadır. Kuraklık stresi altında bitkilerde meydana gelen değişiklikleri anlamak çok önemlidir. Bu çalışmada enginar tohumları ilk olarak yaygın olarak kullanılan kuraklık stres ajanı olan mannitol içerisinde üç farklı konsantrasyonda (50, 100 ve 250 mg L-1) 8 saat süreyle bekletilmiş ve daha sonra elde edilen fideler 15 gün aralıklarla aynı mannitol konsantrasyonlarına tabi tutulmuştur. Daha sonra üç enginar çeşidinde (Sakız, Bayrampaşa ve Olympus F1) yaprak sayısı, kök uzunluğu, gövde uzunluğu, bitki boyu, klorofil, prolin, yaprağa bağlı su içeriği ve toplam fenol-antioksidan içeriği gibi bazı tohum çimlenmesi ve vejetatif büyüme parametreleri kuraklık stresi altında araştırılmıştır. Sonuçlar, kuraklık stresinin enginar tohumları ve fideleri üzerindeki etkisinin çeşitlere, ön işleme ve uygulama konsantrasyonlarına bağlı olarak değiştiğini ortaya koymuştur.

Kaynakça

  • Anjum, S.A., Farooq, M., Xie, X., Liu, X., Ijaz, M.F. 2012. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic., 140: 66-73.
  • Ashraf, M., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envion. and Experim. Bot., 59: 206-216.
  • Cao, D., Li, Y., Liu, B., Kong, F., Tran, L.S.P. 2018. Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad. Dev., 29: 1054-1064.
  • Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J., 90: 856-867.
  • Dawood, M.F.A., Al Mamun Sohag, A., Tahjib-Ul-Arif, M., Abdel Latef, A.A.H. 2021. Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. Plant Phys. and Biochem., 159: 347-362.
  • Fernández, J., Curt, M. D., Aguado, P.L. 2006. Industrial applications of Cynara cardunculus L. for energy and other uses. Indian Crop Production, 24: 222-229.
  • Gholamin, R., Khayatnezhad, M. 2010. Effects of polyethylene glycol and NaCl stress on two cultivars of wheat (Triticum durum) at germination and early seeding stages. American – Eurasian J. Agric. Environ. Sci., 9: 86-90.
  • Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch., 48: 909-930.
  • Gong, H., Zhu, X., Chen, K., Wang, S., Chenglie, Z. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169(2): 313-321.
  • Grand, K. J., Kreyling, L. F. H., Dienstbach, C., Beierkuhnlein Jentsch, A. 2014. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystems and Environment. Agriculture, Ecosystems and Environment, 186: 11-22.
  • Hassanzadeh, M., Ebadi, A., Panahyan-e-Kivi, M., Eshghi, A.G., Jamaati-e-Somarin, S.H., Saeidi, M., Zabi-hi-e-Mahmoodabad, R. 2009. Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Res. J. Environ. Sci., 3: 345-350. http://doi.org/10.3923/rjes.2009.345.350.
  • He, M., He, C.Q., Ding, N.Z. 2018. Abiotic stresses: general defenses of land plants and chances for engineering multi stress tolerance. Front. Plant Sci., 9: 1771.
  • Hossain, M.A., Hoque, M.A., Burritt, D.J., Fujita, M. 2014. Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In Oxidative damage to plants. pp 477-522 (Academic Press: Cambridge, MA, USA).
  • Jorenush, M.H., Rajabi, M. 2015. Effect of drought and salinity tensions on germination and seedling growth of artichoke (Cynara scolymus L.). Int. J. Adv. Biol. Biom. Res, 3: 297-302.
  • Kauer, G., Asthir, B. 2015. Proline: a key player in plant abiotic stress tolerance. Biol. Plantarum., 59: 609-619.
  • Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., Babalar, M. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9: 19250. https://doi.org/10.1038/s41598-019-55889-y.
  • Kuşvuran, Ş. 2010. Doktora Tezi, Çukurova Üniversitesi, Adana, Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, 356 s.
  • Lucini, L., Borgognone, D., Rouphael, Y., Cardarelli, M., Bernardi, J., Colla, G. 2016. Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front. in plant sci., 7: 948.
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., Sohrabi, Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci., 4: 580-585. http://doi.org/10.1.1.658.100.
  • Mancosu, N., Snyder, R.L., Kyriakakis, G., Spano, D. 2015. Water scarcity and future challenges for food production. Water, 7: 975-992. http://dx.doi.org/10.3390/w7030975.
  • Martinez, J.P., Silva, H., Ledent, J.F., Pinto, M. 2007. Effects of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Argon, 26,: 30-38.
  • Masoudi-Sadaghiani, F., Abdollahi-Mandoulakani, B., Zardoshti, M.R., Rasouli-Sadaghiani, H., Tavakoli, A. 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust. J. Crop Sci., 5: 55-60.
  • Mostafavi, K., Sadeghi Give, H., Dadresan, M., Zarabi, M. 2011. Effects of drought stress on germination indices of corn hybrids (Zea mays L.) Int J AgriSci., 1(2):10-18.
  • Możdżeń, K., Bojarski, B., Rut, G., Migdałek, G., Repka, P., Rzepka, A. 2015. Effect of drought stress induced by mannıtol on physıological parameters of maize (Zea mays L.) seedlings and plants. J Microbiol Biotech Food Sci, 4(2): 86-91.
  • Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol., 59: 651-681.
  • Nouraei, S., Rahimmalek, M., Saeidi, G. 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Scientia Hort., 233: 378-385.
  • Okunlola, G.O., Olatunji, O.A., Akinwale, R.O., Tariq, A., Adelusi, A.A. 2017. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic., 224: 198-205. http://doi.org/10.1016/j.scienta.2017.06.020.
  • Sadeghian S.Y., Yavari, N. 2004. Effect of water-deficit stress on germination and early seedling growth in sugar beet. J. Agronomy & Crop Science, 190: 138-144.
  • Salem, N., Msaada, K., Dhifi, W., Sriti, J., Mejri, H., Limam, F., Marzouk, B. 2014. Effect of drought on safflower natural dyes and their biological activities. Excli. J., 13: 1-18. http://doi.org/10.17877/DE290R-15490.
  • Sanchez, F.J., Andres, E.F., Tenorio, J.L., Ayerbe, L. 2004. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Res., 86: 81-90.
  • Sankar, B., Abdul Jaleel, C., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvan, R. 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water limited conditions. Biointerfaces, 62: 125-129.
  • Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and anti-oxidants by means of Folin-Ciocalteu reagent. Meth. in Enzym., 299: 152-178.
  • Sperdouli, I., Moustakas, M. 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Plant Physiol., 169: 577-585.
  • Younis, M.E., Hasaneen, M.N.A., Kazamel, A.M.S. 2010. Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma, 239: 39-48. http://dx.doi.org/10.1007/s00709-009-0080-5.
  • Yuan, Y., Liu, Y., Wu, C., Chen, S., Wang, Z., Yang, Z., Qin, S., Huang, L. 2012. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One, 7: e42946. http://doi.org/10.1371/journal.pone.0042946.

Using Mannitol as Drought Stress Agent on Globe Artichoke [Cynara cardunculus var. scolymus (L.) Fiori]

Yıl 2023, Cilt: 38 Sayı: 3, 637 - 656, 26.10.2023
https://doi.org/10.7161/omuanajas.1353386

Öz

The globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori], one of the special members of the Asteraceae family, has been consumed by people for their culinary and health advantages since ancient times. Global agricultural output and production efficiency are both hampered by adverse environmental conditions, notably drought. In order to promote breeding studies, it is crucial to use plants that are adaptable to drought stress, which negatively impacts plant productivity. It is crucial to understand the changes taking place in plants under drought stress. In the present study, artichoke seeds were initially kept in mannitol, which is a commonly used drought stress agent, in three different concentrations (50, 100, and 250 mg L-1) for 8 hours and later on obtained seedlings were subjected to same mannitol concentrations with 15 days intervals. Later on some seed germination and vegetative growth parameters, such as number of leaves, root length, stem height, plant height, chlorophyll, proline, leaf-related water contents, and total phenol-antioxidant contents in three globe artichoke cultivars (Sakız OP, Bayrampaşa OP, and Olympus F1) were investigated under drought stress. Results revealed that the impact of drought stress on artichoke seeds and seedlings varied depending on cultivars and pre-treatment and treatment concentrations.

Kaynakça

  • Anjum, S.A., Farooq, M., Xie, X., Liu, X., Ijaz, M.F. 2012. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic., 140: 66-73.
  • Ashraf, M., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envion. and Experim. Bot., 59: 206-216.
  • Cao, D., Li, Y., Liu, B., Kong, F., Tran, L.S.P. 2018. Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad. Dev., 29: 1054-1064.
  • Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J., 90: 856-867.
  • Dawood, M.F.A., Al Mamun Sohag, A., Tahjib-Ul-Arif, M., Abdel Latef, A.A.H. 2021. Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. Plant Phys. and Biochem., 159: 347-362.
  • Fernández, J., Curt, M. D., Aguado, P.L. 2006. Industrial applications of Cynara cardunculus L. for energy and other uses. Indian Crop Production, 24: 222-229.
  • Gholamin, R., Khayatnezhad, M. 2010. Effects of polyethylene glycol and NaCl stress on two cultivars of wheat (Triticum durum) at germination and early seeding stages. American – Eurasian J. Agric. Environ. Sci., 9: 86-90.
  • Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch., 48: 909-930.
  • Gong, H., Zhu, X., Chen, K., Wang, S., Chenglie, Z. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169(2): 313-321.
  • Grand, K. J., Kreyling, L. F. H., Dienstbach, C., Beierkuhnlein Jentsch, A. 2014. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystems and Environment. Agriculture, Ecosystems and Environment, 186: 11-22.
  • Hassanzadeh, M., Ebadi, A., Panahyan-e-Kivi, M., Eshghi, A.G., Jamaati-e-Somarin, S.H., Saeidi, M., Zabi-hi-e-Mahmoodabad, R. 2009. Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Res. J. Environ. Sci., 3: 345-350. http://doi.org/10.3923/rjes.2009.345.350.
  • He, M., He, C.Q., Ding, N.Z. 2018. Abiotic stresses: general defenses of land plants and chances for engineering multi stress tolerance. Front. Plant Sci., 9: 1771.
  • Hossain, M.A., Hoque, M.A., Burritt, D.J., Fujita, M. 2014. Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In Oxidative damage to plants. pp 477-522 (Academic Press: Cambridge, MA, USA).
  • Jorenush, M.H., Rajabi, M. 2015. Effect of drought and salinity tensions on germination and seedling growth of artichoke (Cynara scolymus L.). Int. J. Adv. Biol. Biom. Res, 3: 297-302.
  • Kauer, G., Asthir, B. 2015. Proline: a key player in plant abiotic stress tolerance. Biol. Plantarum., 59: 609-619.
  • Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., Babalar, M. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9: 19250. https://doi.org/10.1038/s41598-019-55889-y.
  • Kuşvuran, Ş. 2010. Doktora Tezi, Çukurova Üniversitesi, Adana, Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, 356 s.
  • Lucini, L., Borgognone, D., Rouphael, Y., Cardarelli, M., Bernardi, J., Colla, G. 2016. Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front. in plant sci., 7: 948.
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., Sohrabi, Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci., 4: 580-585. http://doi.org/10.1.1.658.100.
  • Mancosu, N., Snyder, R.L., Kyriakakis, G., Spano, D. 2015. Water scarcity and future challenges for food production. Water, 7: 975-992. http://dx.doi.org/10.3390/w7030975.
  • Martinez, J.P., Silva, H., Ledent, J.F., Pinto, M. 2007. Effects of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Argon, 26,: 30-38.
  • Masoudi-Sadaghiani, F., Abdollahi-Mandoulakani, B., Zardoshti, M.R., Rasouli-Sadaghiani, H., Tavakoli, A. 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust. J. Crop Sci., 5: 55-60.
  • Mostafavi, K., Sadeghi Give, H., Dadresan, M., Zarabi, M. 2011. Effects of drought stress on germination indices of corn hybrids (Zea mays L.) Int J AgriSci., 1(2):10-18.
  • Możdżeń, K., Bojarski, B., Rut, G., Migdałek, G., Repka, P., Rzepka, A. 2015. Effect of drought stress induced by mannıtol on physıological parameters of maize (Zea mays L.) seedlings and plants. J Microbiol Biotech Food Sci, 4(2): 86-91.
  • Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol., 59: 651-681.
  • Nouraei, S., Rahimmalek, M., Saeidi, G. 2018. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Scientia Hort., 233: 378-385.
  • Okunlola, G.O., Olatunji, O.A., Akinwale, R.O., Tariq, A., Adelusi, A.A. 2017. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic., 224: 198-205. http://doi.org/10.1016/j.scienta.2017.06.020.
  • Sadeghian S.Y., Yavari, N. 2004. Effect of water-deficit stress on germination and early seedling growth in sugar beet. J. Agronomy & Crop Science, 190: 138-144.
  • Salem, N., Msaada, K., Dhifi, W., Sriti, J., Mejri, H., Limam, F., Marzouk, B. 2014. Effect of drought on safflower natural dyes and their biological activities. Excli. J., 13: 1-18. http://doi.org/10.17877/DE290R-15490.
  • Sanchez, F.J., Andres, E.F., Tenorio, J.L., Ayerbe, L. 2004. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Res., 86: 81-90.
  • Sankar, B., Abdul Jaleel, C., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvan, R. 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water limited conditions. Biointerfaces, 62: 125-129.
  • Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and anti-oxidants by means of Folin-Ciocalteu reagent. Meth. in Enzym., 299: 152-178.
  • Sperdouli, I., Moustakas, M. 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Plant Physiol., 169: 577-585.
  • Younis, M.E., Hasaneen, M.N.A., Kazamel, A.M.S. 2010. Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma, 239: 39-48. http://dx.doi.org/10.1007/s00709-009-0080-5.
  • Yuan, Y., Liu, Y., Wu, C., Chen, S., Wang, Z., Yang, Z., Qin, S., Huang, L. 2012. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One, 7: e42946. http://doi.org/10.1371/journal.pone.0042946.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Tugce Ozsan Kılıc 0000-0002-3265-6886

Timur Tongur 0000-0003-3030-8930

Ahmet Naci Onus 0000-0001-8615-1480

Erken Görünüm Tarihi 20 Ekim 2023
Yayımlanma Tarihi 26 Ekim 2023
Kabul Tarihi 25 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 3

Kaynak Göster

APA Ozsan Kılıc, T., Tongur, T., & Onus, A. N. (2023). Using Mannitol as Drought Stress Agent on Globe Artichoke [Cynara cardunculus var. scolymus (L.) Fiori]. Anadolu Tarım Bilimleri Dergisi, 38(3), 637-656. https://doi.org/10.7161/omuanajas.1353386
Online ISSN: 1308-8769