Evaluation of the protective effects of folic acid on the lung exposed to 900-MHZ electromagnetic field: a stereological and histopathological study
Year 2022,
Volume: 39 Issue: 1, 204 - 209, 01.01.2022
Kiymet Kubra Yurt
,
Elfide Gizem Kıvrak
,
Zuhal Altunkaynak
Abstract
There is strong scientific evidence that radio frequency (RF) radiation is harmful to life Exposure to radiation may cause lung toxicity and respiratory disorders. Folic acid (FA) is one of the powerful antioxidants and minimizes the oxidative stress in the biological system. In this study, we evaluated the effectiveness of the FA for prevent of the EMF induced potential negative effects to the lung. Twenty-four male Wistar albino rats were divided into the four groups; control group (Cont), electromagnetic field group (EMF), FA treated group (FA), and electromagnetic field exposure + FA treated group (EFA). After the routine histological procedures, volumes of the alveoli, bronchioles and blood vessels have been estimated by the Cavalieri principle. It was found that a significant decrease in the mean volume of alveoli, bronchioles and blood vessels in EMF group in comparison of the Cont group (p<0.05). Besides this, histopathological analysis revealed that impaired lung structure, shrunken alveoli and increased thickness of the alveolar wall in the EMF group sections. In the EFA group, significant protective effects were observed in the structures volumes and histopathology (p<0.05). In conclusion, our study suggested that FA has protective effect against the EMF induced lung injury.
Supporting Institution
Ondokuz Mayıs University project management office
Project Number
PYO. TIP.1904.13.025
References
- Altun, G., Kaplan, S., Deniz, O. G., Kocacan, S. E., Canan, S., Davis, D., & Marangoz, C. (2017). Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields. Journal of microscopy and ultrastructure, 5(4), 230-241.
- Altunkaynak, M. E., Ozbek, E., Altunkaynak, B. Z., Can, I., Unal, D., & Unal, B. (2008). The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. Journal of anatomy, 212(6), 845–852. https://doi.org/10.1111/j.1469-7580.2008.00902.x
- Asbaghi, O., Ghanavati, M., Ashtary-Larky, D., Bagheri, R., Rezaei Kelishadi, M., Nazarian, B., Nordvall, M., Wong, A.; Dutheil, F., Suzuki, K., et al. (2021). Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants, 10, 871. https://doi.org/10.3390/ antiox1006087
- Baltaci, A.K., Mogulkoc, R., Salbacak, A., Celik, I., Sivrikaya, A., 2012. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues. Bratisl. Lek. Listy.113, 400-403.
- Bas, O., Odaci, E., Mollaoglu, H., Ucok, K., & Kaplan, S. (2009). Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicology and industrial health, 25(6), 377–384. https://doi.org/10.1177/0748233709106442
- Cole, K. K., Perez-Polo, J. R. (2002). Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. Journal of neurochemistry, 82(1), 19–29. https://doi.org/10.1046/j.1471-4159.2002.00935.x
- Deniz, Ö. G., Kıvrak, E. G., Kaplan, A. A., & Altunkaynak, B. Z. (2017). Effects of folic acid on rat kidney exposed to 900 MHz electromagnetic radiation. Journal of microscopy and ultrastructure, 5(4), 198-205.
- Djordjevic, N. Z., Paunović, M. G., & Peulić, A. S. (2017). Anxiety-like behavioural effects of extremely low-frequency electromagnetic field in rats. Environmental science and pollution research international, 24(27), 21693–21699. https://doi.org/10.1007/s11356-017-9710-1
- Duan, Y., Wang, Z., Zhang, H., He, Y., Lu, R., Zhang, R., Sun, G., & Sun, X. (2013). The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food & function, 4(8), 1252–1262. https://doi.org/10.1039/c3fo60116a
- El-Bialy, N. S., & Rageh, M. M. (2013). Extremely low-frequency magnetic field enhances the therapeutic efficacy of low-dose cisplatin in the treatment of Ehrlich carcinoma. BioMed research international, 2013, 189352. https://doi.org/10.1155/2013/189352
- Ghodbane, S., Lahbib, A., Ammari, M., Sakly, M., & Abdelmelek, H. (2015). Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations. General physiology and biophysics, 34(1), 23–32. https://doi.org/10.4149/gpb_2014027
- Güler, G., Ozgur, E., Keles, H., Tomruk, A., Vural, S. A., & Seyhan, N. (2016). Neurodegenerative changes and apoptosis induced by intrauterine and extrauterine exposure of radiofrequency radiation. Journal of chemical neuroanatomy, 75, 128-133.
- Gundersen H. J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of microscopy, 143(Pt 1), 3–45.
- Gundersen, H. J., & Jensen, E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of microscopy, 147(Pt 3), 229–263. https://doi.org/10.1111/j.1365-2818.1987.tb02837.x
- Hirayama, F., Lee, A. H., Terasawa, K., & Kagawa, Y. (2010). Folate intake associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease. Asia Pacific journal of clinical nutrition, 19(1), 103–109.
- Joshi, R., Adhikari, S., Patro, B.S., Chattopadhyay, S., Mukherjee, T. (2001). Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med. 30, 1390–1399.
- Kivrak, E. G., Altunkaynak, B. Z., Alkan, I., Yurt, K. K., Kocaman, A., Onger, M. E. (2017). Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. Journal of microscopy and ultrastructure, 5(4), 216-224.
- Krebs, M. O., Bellon, A., Mainguy, G., Jay, T. M., & Frieling, H. (2009). One-carbon metabolism and schizophrenia: current challenges and future directions. Trends in molecular medicine, 15(12), 562–570. https://doi.org/10.1016/j.molmed.2009.10.001
- Liu, C., Duan, W., Xu, S., Chen, C., He, M., Zhang, L., Yu, Z., & Zhou, Z. (2013). Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicology letters, 218(1), 2–9. https://doi.org/10.1016/j.toxlet.2013.01.003
- Lu, Y. S., Huang, B. T., & Huang, Y. X. (2012). Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxidative medicine and cellular longevity, 2012, 740280. https://doi.org/10.1155/2012/740280
- Madjid Ansari, A., Farzampour, S., Sadr, A., Shekarchi, B., & Majidzadeh-A, K. (2016). Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway. Life sciences, 146, 52–57. https://doi.org/10.1016/j.lfs.2015.12.055
- Mutavdzin, S., Gopcevic, K., Stankovic, S., Jakovljevic Uzelac, J., Labudovic Borovic, M., & Djuric, D. (2019). The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. Oxidative medicine and cellular longevity, 2019, 1342549. https://doi.org/10.1155/2019/1342549
- Odaci, E., Bas, O., & Kaplan, S. (2008). Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain research, 1238, 224–229. https://doi.org/10.1016/j.brainres.2008.08.013
- Qi, G., Zuo, X., Zhou, L., Aoki, E., Okamula, A., Watanebe, M., Wang, H., Wu, Q., Lu, H., Tuncel, H., Watanabe, H., Zeng, S., & Shimamoto, F. (2015). Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice. Environmental health and preventive medicine, 20(4), 287–293. https://doi.org/10.1007/s12199-015-0463-5
- Salunke, B. P., Umathe, S. N., Chavan, J. G. (2014). Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacology, biochemistry, and behavior, 122, 273–278. https://doi.org/10.1016/j.pbb.2014.04.007
- Saygin M., Caliskan S., Karahan N., Koyu A., Gumral N., Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol. Ind. Health. 2011;27:455–463. doi: 10.1177/0748233710389851.
- Sepehrimanesh, M., Saeb, M., Nazifi, S., Kazemipour, N., Jelodar, G., & Saeb, S. (2014). Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model. International journal of biometeorology, 58(7), 1657–1663. https://doi.org/10.1007/s00484-013-0771-7
- Seyhan, N., Canseven, A. G. (2006). In vivo effects of ELF MFs on collagen synthesis, free radical processes, natural antioxidant system, respiratory burst system, immune system activities, and electrolytes in the skin, plasma, spleen, lung, kidney, and brain tissues. Electromagnetic biology and medicine, 25(4), 291–305. https://doi.org/10.1080/15368370601054787
- Simkó, M. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Current medicinal chemistry, 14(10), 1141–1152. https://doi.org/10.2174/092986707780362835
- Soffritti, M., Tibaldi, E., Padovani, M., Hoel, D. G., Giuliani, L., Bua, L., Lauriola, M., Falcioni, L., Manservigi, M., Manservisi, F., & Belpoggi, F. (2016). Synergism between sinusoidal-50 Hz magnetic field and formaldehyde in triggering carcinogenic effects in male Sprague-Dawley rats. American journal of industrial medicine, 59(7), 509–521. https://doi.org/10.1002/ajim.22598
- Tiwari, R., Lakshmi, N. K., Bhargava, S. C., & Ahuja, Y. R. (2015). Epinephrine, DNA integrity and oxidative stress in workers exposed to extremely low-frequency electromagnetic fields (ELF-EMFs) at 132 kV substations. Electromagnetic biology and medicine, 34(1), 56–62. https://doi.org/10.3109/15368378.2013.869755
- Türedi, S., Kerimoğlu, G., Mercantepe, T., & Odacı, E. (2017). Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59. International journal of radiation biology, 93(9), 990–999. https://doi.org/10.1080/09553002.2017.1350768
- Yahyazadeh, A., Kıvrak, E.G., Erdem Koç, G.,, Altunkaynak, B.Z. (2021). Protective effect of melatonin on the rat lung following exposure to 900-MHz electromagnetic field: a stereological and histopathological study. J Exp Clin Med, 38, 55-60. 10.52142/omujecm.38.2.1
Year 2022,
Volume: 39 Issue: 1, 204 - 209, 01.01.2022
Kiymet Kubra Yurt
,
Elfide Gizem Kıvrak
,
Zuhal Altunkaynak
Project Number
PYO. TIP.1904.13.025
References
- Altun, G., Kaplan, S., Deniz, O. G., Kocacan, S. E., Canan, S., Davis, D., & Marangoz, C. (2017). Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields. Journal of microscopy and ultrastructure, 5(4), 230-241.
- Altunkaynak, M. E., Ozbek, E., Altunkaynak, B. Z., Can, I., Unal, D., & Unal, B. (2008). The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. Journal of anatomy, 212(6), 845–852. https://doi.org/10.1111/j.1469-7580.2008.00902.x
- Asbaghi, O., Ghanavati, M., Ashtary-Larky, D., Bagheri, R., Rezaei Kelishadi, M., Nazarian, B., Nordvall, M., Wong, A.; Dutheil, F., Suzuki, K., et al. (2021). Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants, 10, 871. https://doi.org/10.3390/ antiox1006087
- Baltaci, A.K., Mogulkoc, R., Salbacak, A., Celik, I., Sivrikaya, A., 2012. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues. Bratisl. Lek. Listy.113, 400-403.
- Bas, O., Odaci, E., Mollaoglu, H., Ucok, K., & Kaplan, S. (2009). Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicology and industrial health, 25(6), 377–384. https://doi.org/10.1177/0748233709106442
- Cole, K. K., Perez-Polo, J. R. (2002). Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. Journal of neurochemistry, 82(1), 19–29. https://doi.org/10.1046/j.1471-4159.2002.00935.x
- Deniz, Ö. G., Kıvrak, E. G., Kaplan, A. A., & Altunkaynak, B. Z. (2017). Effects of folic acid on rat kidney exposed to 900 MHz electromagnetic radiation. Journal of microscopy and ultrastructure, 5(4), 198-205.
- Djordjevic, N. Z., Paunović, M. G., & Peulić, A. S. (2017). Anxiety-like behavioural effects of extremely low-frequency electromagnetic field in rats. Environmental science and pollution research international, 24(27), 21693–21699. https://doi.org/10.1007/s11356-017-9710-1
- Duan, Y., Wang, Z., Zhang, H., He, Y., Lu, R., Zhang, R., Sun, G., & Sun, X. (2013). The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food & function, 4(8), 1252–1262. https://doi.org/10.1039/c3fo60116a
- El-Bialy, N. S., & Rageh, M. M. (2013). Extremely low-frequency magnetic field enhances the therapeutic efficacy of low-dose cisplatin in the treatment of Ehrlich carcinoma. BioMed research international, 2013, 189352. https://doi.org/10.1155/2013/189352
- Ghodbane, S., Lahbib, A., Ammari, M., Sakly, M., & Abdelmelek, H. (2015). Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations. General physiology and biophysics, 34(1), 23–32. https://doi.org/10.4149/gpb_2014027
- Güler, G., Ozgur, E., Keles, H., Tomruk, A., Vural, S. A., & Seyhan, N. (2016). Neurodegenerative changes and apoptosis induced by intrauterine and extrauterine exposure of radiofrequency radiation. Journal of chemical neuroanatomy, 75, 128-133.
- Gundersen H. J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of microscopy, 143(Pt 1), 3–45.
- Gundersen, H. J., & Jensen, E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of microscopy, 147(Pt 3), 229–263. https://doi.org/10.1111/j.1365-2818.1987.tb02837.x
- Hirayama, F., Lee, A. H., Terasawa, K., & Kagawa, Y. (2010). Folate intake associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease. Asia Pacific journal of clinical nutrition, 19(1), 103–109.
- Joshi, R., Adhikari, S., Patro, B.S., Chattopadhyay, S., Mukherjee, T. (2001). Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med. 30, 1390–1399.
- Kivrak, E. G., Altunkaynak, B. Z., Alkan, I., Yurt, K. K., Kocaman, A., Onger, M. E. (2017). Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. Journal of microscopy and ultrastructure, 5(4), 216-224.
- Krebs, M. O., Bellon, A., Mainguy, G., Jay, T. M., & Frieling, H. (2009). One-carbon metabolism and schizophrenia: current challenges and future directions. Trends in molecular medicine, 15(12), 562–570. https://doi.org/10.1016/j.molmed.2009.10.001
- Liu, C., Duan, W., Xu, S., Chen, C., He, M., Zhang, L., Yu, Z., & Zhou, Z. (2013). Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicology letters, 218(1), 2–9. https://doi.org/10.1016/j.toxlet.2013.01.003
- Lu, Y. S., Huang, B. T., & Huang, Y. X. (2012). Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxidative medicine and cellular longevity, 2012, 740280. https://doi.org/10.1155/2012/740280
- Madjid Ansari, A., Farzampour, S., Sadr, A., Shekarchi, B., & Majidzadeh-A, K. (2016). Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway. Life sciences, 146, 52–57. https://doi.org/10.1016/j.lfs.2015.12.055
- Mutavdzin, S., Gopcevic, K., Stankovic, S., Jakovljevic Uzelac, J., Labudovic Borovic, M., & Djuric, D. (2019). The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. Oxidative medicine and cellular longevity, 2019, 1342549. https://doi.org/10.1155/2019/1342549
- Odaci, E., Bas, O., & Kaplan, S. (2008). Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain research, 1238, 224–229. https://doi.org/10.1016/j.brainres.2008.08.013
- Qi, G., Zuo, X., Zhou, L., Aoki, E., Okamula, A., Watanebe, M., Wang, H., Wu, Q., Lu, H., Tuncel, H., Watanabe, H., Zeng, S., & Shimamoto, F. (2015). Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice. Environmental health and preventive medicine, 20(4), 287–293. https://doi.org/10.1007/s12199-015-0463-5
- Salunke, B. P., Umathe, S. N., Chavan, J. G. (2014). Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacology, biochemistry, and behavior, 122, 273–278. https://doi.org/10.1016/j.pbb.2014.04.007
- Saygin M., Caliskan S., Karahan N., Koyu A., Gumral N., Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol. Ind. Health. 2011;27:455–463. doi: 10.1177/0748233710389851.
- Sepehrimanesh, M., Saeb, M., Nazifi, S., Kazemipour, N., Jelodar, G., & Saeb, S. (2014). Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model. International journal of biometeorology, 58(7), 1657–1663. https://doi.org/10.1007/s00484-013-0771-7
- Seyhan, N., Canseven, A. G. (2006). In vivo effects of ELF MFs on collagen synthesis, free radical processes, natural antioxidant system, respiratory burst system, immune system activities, and electrolytes in the skin, plasma, spleen, lung, kidney, and brain tissues. Electromagnetic biology and medicine, 25(4), 291–305. https://doi.org/10.1080/15368370601054787
- Simkó, M. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Current medicinal chemistry, 14(10), 1141–1152. https://doi.org/10.2174/092986707780362835
- Soffritti, M., Tibaldi, E., Padovani, M., Hoel, D. G., Giuliani, L., Bua, L., Lauriola, M., Falcioni, L., Manservigi, M., Manservisi, F., & Belpoggi, F. (2016). Synergism between sinusoidal-50 Hz magnetic field and formaldehyde in triggering carcinogenic effects in male Sprague-Dawley rats. American journal of industrial medicine, 59(7), 509–521. https://doi.org/10.1002/ajim.22598
- Tiwari, R., Lakshmi, N. K., Bhargava, S. C., & Ahuja, Y. R. (2015). Epinephrine, DNA integrity and oxidative stress in workers exposed to extremely low-frequency electromagnetic fields (ELF-EMFs) at 132 kV substations. Electromagnetic biology and medicine, 34(1), 56–62. https://doi.org/10.3109/15368378.2013.869755
- Türedi, S., Kerimoğlu, G., Mercantepe, T., & Odacı, E. (2017). Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59. International journal of radiation biology, 93(9), 990–999. https://doi.org/10.1080/09553002.2017.1350768
- Yahyazadeh, A., Kıvrak, E.G., Erdem Koç, G.,, Altunkaynak, B.Z. (2021). Protective effect of melatonin on the rat lung following exposure to 900-MHz electromagnetic field: a stereological and histopathological study. J Exp Clin Med, 38, 55-60. 10.52142/omujecm.38.2.1