Research Article
BibTex RIS Cite
Year 2022, Volume: 39 Issue: 4, 1073 - 1077, 29.10.2022

Abstract

References

  • 1. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;15;151(12):1158-71. doi: 10.1093/oxfordjournals.aje.a010166.
  • 2. Richardson H, Kelsall G, Tellier P, Voyer H, Abrahamowicz M, Ferenczy A et al. The natural history of type-specific human papillomavirus infections in female uni-versity students. Cancer Epidemiol Biomarkers Prev. 2003;12(6):485-90. PMID: 12814991.
  • 3. Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM; ALTS Group. A 2-year prospective study of human papillomavirus persistence among wo-men with a cytological diagnosis of atypical squamous cells of undetermined signifi-cance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;1;195(11):1582-9. doi: 10.1086/516784.
  • 4. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA. Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix. Eur J Cancer Prev. 2008;17(6):555-60. doi: 10.1097/CEJ.0b013e328305a10b.
  • 5. Kim SY, Kim JW, Ko YS, Koo JE, Chung HY, Lee-Kim YC. Changes in lipid pe-roxidation and antioxidant trace elements in serum of women with cervical intraepit-helial neoplasia and invasive cancer. Nutr Cancer. 2003;47(2):126-30. doi: 10.1207/s15327914nc4702_3.
  • 6. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;15;324 ( Pt 1)(Pt 1):1-18. doi: 10.1042/bj3240001.
  • 7. Ziegler DM. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1995;54:305-29. doi: 10.1146/annurev.bi.54.070185.001513.
  • 8. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993; 26(5):351-7. doi: 10.1016/0009-9120(93)90111-i.
  • 9. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging ro-les in cell signaling. Biochem Pharmacol. 2006;28;71(5):551-64. doi: 10.1016/j.bcp.2005.10.044.
  • 10. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;15;48(6):749-62. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • 11. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-32. doi: 10.1016/j.clinbiochem.2014.09.026.
  • 12. De Marco F. Oxidative stress and HPV carcinogenesis. Viruses. 2013;12;5(2):708-31. doi: 10.3390/v5020708.
  • 13. De Marco F, Bucaj E, Foppoli C et al. Oxidative stress in HPV-driven viral carcino-genesis: redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues. PLoS One. 2012;7(3):e34366. doi: 10.1371/journal.pone.0034366.
  • 14. Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol. 2011;1;6(1):45-57. doi: 10.2217/fvl.10.73.
  • 15. Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta. 2015;1850(8):1622-32. doi: 10.1016/j.bbagen.2014.12.016.
  • 16. Siegel EM, Patel N, Lu B et al. Biomarkers of oxidant load and type-specific clearan-ce of prevalent oncogenic human papillomavirus infection: markers of immune res-ponse? Int J Cancer. 2012;1;131(1):219-28. doi: 10.1002/ijc.26363.
  • 17. Sedjo RL, Roe DJ, Abrahamsen M et al. Vitamin A, carotenoids, and risk of persis-tent oncogenic human papillomavirus infection. Cancer Epidemiol Biomarkers. 2002;11(9):876-84. PMID: 12223432.
  • 18. Manju V, Kalaivani Sailaja J, Nalini N. Circulating lipid peroxidation and antioxi-dant status in cervical cancer patients: a case-control study. Clin Biochem. 2002;35(8):621-5. doi: 10.1016/s0009-9120(02)00376-4.
  • 19. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA. Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix. Eur J Cancer Prev. 2008;17(6):555-60. doi: 10.1097/CEJ.0b013e328305a10b.
  • 20. Burhans WC, Weinberger M. DNA replication stress, genome instability and aging. Nucleic Acids Res. 2007;35(22):7545-56. doi: 10.1093/nar/gkm1059.
  • 21. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73-80. doi: 10.2174/187221309787158371.
  • 22. Cremers CM, Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013;13;288(37):26489-96. doi: 10.1074/jbc.R113.462929.
  • 23. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med. 2009;15;47(10):1329-38. doi: 10.1016/j.freeradbiomed.2009.08.021.
  • 24. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging ro-les in cell signaling. Biochem Pharmacol. 2006;28;71(5):551-64. doi: 10.1016/j.bcp.2005.10.044.
  • 25. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;15;48(6):749-62. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • 26. Ozyazici S, Karateke F, Turan U et al. A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis. Mediators Inflamm. 2016;2016:6761050. doi: 10.1155/2016/6761050.
  • 27. Aksoy M, Çelik H. Dynamic thiol/disulphide homeostasis in vitiligo patients. Postepy Dermatol Alergol. 2018;35(5):498-501. doi: 10.5114/ada.2018.72856.
  • 28. Camporeale G, Lorenzo JR, Thomas MG et al. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biol. 2017;11:38-50. doi: 10.1016/j.redox.2016.10.020.

EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION

Year 2022, Volume: 39 Issue: 4, 1073 - 1077, 29.10.2022

Abstract

Objective: Dynamic thiol disulfide homeostasis (TDH) is critical in cervical carcinogenesis at HPV infection as a sign of antioxidant consumption native and total thiol levels decrease in progress to cervical intraepithelial lesions. TDH is the main actor in signaling pathways, apoptosis, antioxidant and detoxification reactions. In this study, we aimed to evaluate the effect of TDH intraepithelial progression of cervical precancerous lesions on HPV positive women.
Methods: This was a prospective cross-sectional study. Subjects were selected from newly diagnosed high risk HPV DNA-positive patients. TDH results were calculated as the levels of disulfide, native and total thiol, the ratios of disulfide/total thiol (SS/SH+SS), disul-fide/native thiol (SS/SH) and native thiol/total thiol (SH/SH+SS).
Results: A total of 146 women were included in the study. Study groups were as group one; control included 66 participants, group two; HPV DNA-positive women without preinvasive cervical lesion included 30 participants and group three; HPV DNA-positive women with preinvasive cervical lesion included 50 participants. Native and total thiol levels were ele-vated on HPV-positive women without preinvasive cervical lesions. There were no signifi-cant differences between groups related to the ratios of SS/SH, SS/ Total SH, SH/ Total SH levels.
Conclusions: HPV infection related to oxidative stress has effects on oxidant/antioxidant balance and could be demonstrated in systemic circulation by TDH parameters. Consump-tion of thiol substances play role in the cervical neoplastic process, replacement with antiox-idants would be a treatment option for HPV infections.

References

  • 1. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;15;151(12):1158-71. doi: 10.1093/oxfordjournals.aje.a010166.
  • 2. Richardson H, Kelsall G, Tellier P, Voyer H, Abrahamowicz M, Ferenczy A et al. The natural history of type-specific human papillomavirus infections in female uni-versity students. Cancer Epidemiol Biomarkers Prev. 2003;12(6):485-90. PMID: 12814991.
  • 3. Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM; ALTS Group. A 2-year prospective study of human papillomavirus persistence among wo-men with a cytological diagnosis of atypical squamous cells of undetermined signifi-cance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;1;195(11):1582-9. doi: 10.1086/516784.
  • 4. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA. Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix. Eur J Cancer Prev. 2008;17(6):555-60. doi: 10.1097/CEJ.0b013e328305a10b.
  • 5. Kim SY, Kim JW, Ko YS, Koo JE, Chung HY, Lee-Kim YC. Changes in lipid pe-roxidation and antioxidant trace elements in serum of women with cervical intraepit-helial neoplasia and invasive cancer. Nutr Cancer. 2003;47(2):126-30. doi: 10.1207/s15327914nc4702_3.
  • 6. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;15;324 ( Pt 1)(Pt 1):1-18. doi: 10.1042/bj3240001.
  • 7. Ziegler DM. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1995;54:305-29. doi: 10.1146/annurev.bi.54.070185.001513.
  • 8. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993; 26(5):351-7. doi: 10.1016/0009-9120(93)90111-i.
  • 9. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging ro-les in cell signaling. Biochem Pharmacol. 2006;28;71(5):551-64. doi: 10.1016/j.bcp.2005.10.044.
  • 10. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;15;48(6):749-62. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • 11. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-32. doi: 10.1016/j.clinbiochem.2014.09.026.
  • 12. De Marco F. Oxidative stress and HPV carcinogenesis. Viruses. 2013;12;5(2):708-31. doi: 10.3390/v5020708.
  • 13. De Marco F, Bucaj E, Foppoli C et al. Oxidative stress in HPV-driven viral carcino-genesis: redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues. PLoS One. 2012;7(3):e34366. doi: 10.1371/journal.pone.0034366.
  • 14. Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol. 2011;1;6(1):45-57. doi: 10.2217/fvl.10.73.
  • 15. Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta. 2015;1850(8):1622-32. doi: 10.1016/j.bbagen.2014.12.016.
  • 16. Siegel EM, Patel N, Lu B et al. Biomarkers of oxidant load and type-specific clearan-ce of prevalent oncogenic human papillomavirus infection: markers of immune res-ponse? Int J Cancer. 2012;1;131(1):219-28. doi: 10.1002/ijc.26363.
  • 17. Sedjo RL, Roe DJ, Abrahamsen M et al. Vitamin A, carotenoids, and risk of persis-tent oncogenic human papillomavirus infection. Cancer Epidemiol Biomarkers. 2002;11(9):876-84. PMID: 12223432.
  • 18. Manju V, Kalaivani Sailaja J, Nalini N. Circulating lipid peroxidation and antioxi-dant status in cervical cancer patients: a case-control study. Clin Biochem. 2002;35(8):621-5. doi: 10.1016/s0009-9120(02)00376-4.
  • 19. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA. Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix. Eur J Cancer Prev. 2008;17(6):555-60. doi: 10.1097/CEJ.0b013e328305a10b.
  • 20. Burhans WC, Weinberger M. DNA replication stress, genome instability and aging. Nucleic Acids Res. 2007;35(22):7545-56. doi: 10.1093/nar/gkm1059.
  • 21. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73-80. doi: 10.2174/187221309787158371.
  • 22. Cremers CM, Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013;13;288(37):26489-96. doi: 10.1074/jbc.R113.462929.
  • 23. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med. 2009;15;47(10):1329-38. doi: 10.1016/j.freeradbiomed.2009.08.021.
  • 24. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging ro-les in cell signaling. Biochem Pharmacol. 2006;28;71(5):551-64. doi: 10.1016/j.bcp.2005.10.044.
  • 25. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;15;48(6):749-62. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • 26. Ozyazici S, Karateke F, Turan U et al. A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis. Mediators Inflamm. 2016;2016:6761050. doi: 10.1155/2016/6761050.
  • 27. Aksoy M, Çelik H. Dynamic thiol/disulphide homeostasis in vitiligo patients. Postepy Dermatol Alergol. 2018;35(5):498-501. doi: 10.5114/ada.2018.72856.
  • 28. Camporeale G, Lorenzo JR, Thomas MG et al. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biol. 2017;11:38-50. doi: 10.1016/j.redox.2016.10.020.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Clinical Research
Authors

Recep Erin 0000-0002-9488-5414

Yeşim Bayoğlu Tekin 0000-0003-0865-3201

Hatice Küçük 0000-0002-6783-1293

Özcan Erel 0000-0002-2996-3236

Publication Date October 29, 2022
Submission Date August 17, 2022
Acceptance Date September 8, 2022
Published in Issue Year 2022 Volume: 39 Issue: 4

Cite

APA Erin, R., Bayoğlu Tekin, Y., Küçük, H., Erel, Ö. (2022). EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION. Journal of Experimental and Clinical Medicine, 39(4), 1073-1077.
AMA Erin R, Bayoğlu Tekin Y, Küçük H, Erel Ö. EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION. J. Exp. Clin. Med. October 2022;39(4):1073-1077.
Chicago Erin, Recep, Yeşim Bayoğlu Tekin, Hatice Küçük, and Özcan Erel. “EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION”. Journal of Experimental and Clinical Medicine 39, no. 4 (October 2022): 1073-77.
EndNote Erin R, Bayoğlu Tekin Y, Küçük H, Erel Ö (October 1, 2022) EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION. Journal of Experimental and Clinical Medicine 39 4 1073–1077.
IEEE R. Erin, Y. Bayoğlu Tekin, H. Küçük, and Ö. Erel, “EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION”, J. Exp. Clin. Med., vol. 39, no. 4, pp. 1073–1077, 2022.
ISNAD Erin, Recep et al. “EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION”. Journal of Experimental and Clinical Medicine 39/4 (October 2022), 1073-1077.
JAMA Erin R, Bayoğlu Tekin Y, Küçük H, Erel Ö. EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION. J. Exp. Clin. Med. 2022;39:1073–1077.
MLA Erin, Recep et al. “EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION”. Journal of Experimental and Clinical Medicine, vol. 39, no. 4, 2022, pp. 1073-7.
Vancouver Erin R, Bayoğlu Tekin Y, Küçük H, Erel Ö. EVALUATION OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS ON HPV POSITIVE-WOMEN IN PROGRESSION TO CERVICAL INTRAEPITHELIAL LESION. J. Exp. Clin. Med. 2022;39(4):1073-7.