Research Article
BibTex RIS Cite

Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals

Year 2024, Volume: 41 Issue: 3, 466 - 473, 30.09.2024

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is one of the most common bacteria isolated from clinical samples, with a rising incidence in hospital infections. This pathogen is inherently resistant to many antibacterial agents. This study aimed to investigate the frequency of carbapenemase genes in P. aeruginosa strains isolated from patients admitted to hospitals in northwestern Iran. A total of 500 P. aeruginosa samples were collected from different clinical samples. Antibiotic susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, and the frequency of the target genes was assessed using polymerase chain reaction (PCR). The antibiotic resistance results of the samples by disc diffusion method showed that imipenem 98.4%, gentamicin 98%, meropenem 91.8%, amikacin 91.6% and cefepime 91% had the highest resistance; also, out of 500 P. aeruginosa isolates, 309 (61.8%) samples were carbapenemase producers. Using the PCR method, it was determined that the blaOXA-48 (39.16%), blaGES (31.72%), and blaIMP (22.01%) genes were the dominant genes. Our results showed that the prevalence of carbapenemase genes in P. aeruginosa strains isolated from patients admitted to hospitals in northwestern Iran is very high; indicating a need for effective infection control measures to prevent the spread of P. aeruginosa in hospitals.

References

  • Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009;35(7):1020-5.
  • Aoki S, Hirakata Y, Kondoh A, Gotoh N, Yanagihara K, Miyazaki Y, et al. Virulence of metallo-β-lactamase-producing Pseudomonas aeruginosa in vitro and in vivo. Antimicrob Agents Chemother. 2004;48(5):1876-8.
  • Jafari-Sales A, Shadi-Dizaji A. Molecular analysis of CTX-M genes among ESBL producing in Pseudomonas aeru-ginosa isolated from clinical samples by Multiplex-PCR. Hozan J Environment Sci. 2018;2(5):17-29.
  • Sales A, Fathi R, Mobaiyen H, Bonab F, Kondlaji K. Molecular Study of the Prevalence of CTX-M1, CTX-M2, CTXM3 in Pseudomonas aeruginosa Isolated from Clinical Samples in Tabriz Town, Iran. Electronic J Biol. 2017;13(3):253-9.
  • Jafari-Sales A, Khaneshpour H. Molecular Study of BlaIMP and BlaVIM Genes in Pseudomonas Aeruginosa Strains, Producer of Metallo Beta Lactamases Isolated from Clinical Samples in Hospitals and Medical Centers of Tabriz. Paramed Sci Mil Health. 2020;14(4):18-25.
  • Arvanitidou M, Katikaridou E, Douboyas J, Tsakris A. Prognostic factors for nosocomial bacteraemia outcome: a prospective study in a Greek teaching hospital. J Hosp Infect. 2005;61(3):219-24.
  • Jafari Sales A, Jafari B, Beygoli N. Antimicrobial Resistance Patterns in Extended-spectrum βlactamase Producing Klebsiella pneumoniae Isolates in a Razi Hospital Marand, Iran. Electronic J Biol. 2015;11(1):8-12.
  • Jafari Sales A, Mobaiyen H. Frequency and resistance patterns in clinical isolates of Escherichia coli Extended Spectrum Beta Lactamase producing treatment Centers in Marand city, Iran. NCMBJ. 2017;7(26):19-26.
  • Jafari-Sales A, Bagherizadeh Y, Arzani-Birgani P, Shirali M, Shahniani AR. Study of Antibiotic Resistance and Prevalence of bla-TEM gene in Klebsiella pneumoniae Strains isolated from Children with UTI in Tabriz Hospitals. Focus med sci j. 2018;4(1):9-13.
  • Sales AJ, Naebi S, Bannazadeh-Baghi H, Saki M. Antibiotic Resistance Pattern and Prevalence of blaOXA-51, blaNDM, blaVIM, blaPER, blaVEB, blaCTX, tetA and tetB Genes in Acinetobacter baumannii Isolated from Clinical Specimens of Hospitals in Tabriz city, Iran. J Clin Res Paramed Sci. 2021;10(2): e118521.
  • Sales AJ, Naebi S, Nasiri R, Bannazadeh-Baghi H. The antibiotic resistance pattern and prevalence of blaTEM, blaSHV, blaCTX-M, blaPSE-1, sipB/C, and cmlA/tetR genes in Salmonella typhimurium isolated from children with diarrhea in Tabriz, Iran. Int J Health Sci. 2021;7(4): e118523.
  • Jafari-Sales A, Soleimani H, Moradi L. Antibiotic resistance pattern in Klebsiella pneumoniae strains isolated from children with urinary tract infections from Tabriz hospitals. HBB. 2020;4(1):38-45.
  • Eriksen H, Iversen BG, Aavitsland P. Prevalence of nosocomial infections in hospitals in Norway, 2002 and 2003. J Hosp Infect. 2005;60(1):40-5.
  • Radan M, Moniri R, Khorshidi A, Gilasi H, Norouzi Z, Beigi F, et al. Emerging carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP among burn patients in Isfahan, Iran. Arch Trauma Res. 2016;5(3): e33664.
  • Feliziani S, Luján AM, Moyano AJ, Sola C, Bocco JL, Montanaro P, et al. Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS One. 2010;5(9):e12669.
  • Arabestani MR, Rajabpour M, Mashouf RY, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med. 2015;18(2): 102-8.
  • Walsh T. The emergence and implications of metallo‐β‐lactamases in Gram‐negative bacteria. Clin Microbiol Infect. 2005;11:2-9.
  • May TB, Shinabarger D, Maharaj R, Kato J, Chu L, DeVault JD, et al. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev. 1991;4(2):191-206.
  • Dizaji AS, Fathi R, Sales AJ. Molecular study of extended-spectrum beta-lactamase (TEM-1) gene in Escherichia Coli isolates collected from Ostad Alinasab Hospital in Tabriz Iran. MMJ. 2016;29:35-40.
  • Jafari Sales A, Mobaiyen H, Farshbafi Nezhad Zoghi J, Nezamdoost Shadbad N, Purabdollah Kaleybar V. Antimicrobial resistance pattern of extended-spectrum β-Lactamases (ESBLs) producing Escherichia coli isolated from clinical samples in Tabriz city, Iran. Adv Environ Biol. 2014;8(16):179-82.
  • Jafari-Sales A, Bagherizadeh Y, Khalifehpour M, Abdoli-senejan M, Helali-Pargali R. Antibiotic resistance pattern and bla-TEM gene expression in Acinetobacter baumannii isolated from clinical specimens of Tabriz hospitals. Zanco J Med Sci. 2019;20(65):20-9.
  • SADEGHİ-DEYLAMDEH Z, JAFARI-SALES A. Evaluation of the presence of AmpC (FOX) beta-lactamase gene in clinical strains of Escherichia coli isolated from hospitalized patients in Tabriz. J Exp Clin Med. 2021;38(3):301-4.
  • Ebrahimzadeh M, Pourbeiragh G, Jafarı-sales A, Pashazadeh M. Examining the frequency of blaCTX-M, blaTEM, and blaSHV genes in Escherichia coli isolates from patients in Tabriz hospitals, Iran. J Exp Clin Med. 2023;40(4):734-9.
  • Jafari-Sales A, Al-Khafaji NS, Al-Dahmoshi HO, Sadeghi Deylamdeh Z, Akrami S, Shariat A, et al. Occurrence of some common carbapenemase genes in carbapenem-resistant Klebsiella pneumoniae isolates collected from clinical samples in Tabriz, northwestern Iran. BMC Res Notes. 2023;16(1):311.
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-25.
  • Wilson R, Dowling RB. Pseudomonas aeruginosa and other related species. Thorax. 1998;53(3):213-9.
  • Wilke MS, Lovering AL, Strynadka NC. β-Lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol. 2005;8(5):525-33.
  • Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1.
  • Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129-35.
  • Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Invest Drugs. 2008;17(2):131-43.
  • Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014;40(8):1556-61.
  • Tan J, Pitout JD, Guttman DS. New and sensitive assay for determining Pseudomonas aeruginosa metallo-beta-lactamase resistance to imipenem. J Clin Microbiol. 2008;46(5):1870-2.
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933-51.
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211-33.
  • Patel JB. Performance standards for antimicrobial susceptibility testing: Clinical and laboratory standards institute; 2017.
  • Girlich D, Poirel L, Nordmann PJJocm. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50(2):477-9.
  • Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol. 2014;63(10):1303-10.
  • Manchanda V, Rai S, Gupta S, Rautela R, Chopra R, Rawat D, et al. Development of TaqMan real-time polymerase chain reaction for the detection of the newly emerging form of carbapenem resistance gene in clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Indian J Med Microbiol. 2011;29(3):249-53.
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597-606.
  • Lowings M, Ehlers MM, Dreyer AW, Kock MM. High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa–an update. BMC Infect Dis. 2015;15(1):1-10.
  • Ghamgosha M, Shahrekizahedani S, Kafilzadeh F, Bameri Z, Taheri RA, Farnoosh G. Metallo-beta-lactamase VIM-1, SPM-1, and IMP-1 genes among clinical Pseudomonas aeruginosa species isolated in Zahedan, Iran. Jundishapur J Microbiol. 2015;8(4):e17489.
  • Azimi L, Rastegar-Lari A, Talebi M, Ebrahimzadeh-Namvar A, Soleymanzadeh-Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol. 2013;2(3-4):26-31.
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect. 2011;70(1):119-23.
  • Rodríguez-Martínez J-M, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(11):4783-8.
  • Wang C, Wang J, Mi Z. Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamases and carrying two aminoglycoside-modifying enzymes in China. J Hosp Infect. 2006;62(4):522-4.
  • Franco MRG, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics. 2010;65(9):825-9.
  • Lee M-F, Peng C-F, Hsu H-J, Chen Y-H. Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents. 2008;32(6):475-80.
  • Sader HS, Reis A, Silbert S, Gales AC. IMPs, VIMs and SPMs: the diversity of metallo‐β‐lactamases produced by carbapenem‐resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect. 2005;11(1):73-6.
  • Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosastrains producing metallo beta lactamases from infections in burned patients and identification of blaIMP and blaVIMgenes by PCR. Iran J Med Microbiol. 2007;1(1):23-31.
  • Arunagiri K, Sekar B, Sangeetha G, John J. Detection and characterization of metallo-beta-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J. 2012;61(8):778-83.
  • Tavajjohi Z, Moniri R, Khoeshidi A. Frequency of extended-spectrum beta-lactamase (ESBL) multidrug-resistance produced by Pseudomonas aeruginosa isolated from clinical and environmental specimens in Kashan Shahid Beheshti hospital during 2010-11. KAUMS J (FEYZ). 2011;15(2):139-45.
  • Rahimi B, Shojapour M, Sadeghi A, Pourbabayi AA. The study of the antibiotic resistance pattern of Pseudomonas aeruginosa strains isolated from hospitalized patients in Arak. J Arak Uni Med Sci. 2012;15(3):8-14.
  • Salehi M, Hekmatdoost, M., Hosseini, F. Quinolone resistance associated with efllux pumps mexAB-oprM in clinical isolates of Pseudomonas aeruginosa. J Microb World, 2014; 6(4): 290-298.
  • Cavallo J, Hocquet D, Plesiat P, Fabre R, Roussel-Delvallez M. Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. J Antimicrob Chemother. 2007;59(5):1021-4.
  • Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, et al. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 1999;43(12):2877-80.
  • Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of Metallo-β-Lactamase Producing Pseudomonas aeruginosa Isolated From Burn Patients in Tehran, Iran. Lab Med. 2010;41(10):609-12.
  • Imani Foolad A, Rostami Z, Shapouri R. Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil Univ Med Sci. 2010;10(3):189-98.
  • Shirani K, Ataei B, Roshandel F. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Adv Biomed Res. 2016;5:124.
  • Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008;60(1):125-8.
  • Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of metallo-beta-lactamases in clinical isolates of pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2004;48(2):131-5.
  • Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo). 2010;65(9):825-9.
  • Doosti M, Ramazani A, Garshasbi M. Identification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran. Iran Biomed J. 2013;17(3):129-33.
  • Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol. 2009;12(1):61-6.
Year 2024, Volume: 41 Issue: 3, 466 - 473, 30.09.2024

Abstract

References

  • Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009;35(7):1020-5.
  • Aoki S, Hirakata Y, Kondoh A, Gotoh N, Yanagihara K, Miyazaki Y, et al. Virulence of metallo-β-lactamase-producing Pseudomonas aeruginosa in vitro and in vivo. Antimicrob Agents Chemother. 2004;48(5):1876-8.
  • Jafari-Sales A, Shadi-Dizaji A. Molecular analysis of CTX-M genes among ESBL producing in Pseudomonas aeru-ginosa isolated from clinical samples by Multiplex-PCR. Hozan J Environment Sci. 2018;2(5):17-29.
  • Sales A, Fathi R, Mobaiyen H, Bonab F, Kondlaji K. Molecular Study of the Prevalence of CTX-M1, CTX-M2, CTXM3 in Pseudomonas aeruginosa Isolated from Clinical Samples in Tabriz Town, Iran. Electronic J Biol. 2017;13(3):253-9.
  • Jafari-Sales A, Khaneshpour H. Molecular Study of BlaIMP and BlaVIM Genes in Pseudomonas Aeruginosa Strains, Producer of Metallo Beta Lactamases Isolated from Clinical Samples in Hospitals and Medical Centers of Tabriz. Paramed Sci Mil Health. 2020;14(4):18-25.
  • Arvanitidou M, Katikaridou E, Douboyas J, Tsakris A. Prognostic factors for nosocomial bacteraemia outcome: a prospective study in a Greek teaching hospital. J Hosp Infect. 2005;61(3):219-24.
  • Jafari Sales A, Jafari B, Beygoli N. Antimicrobial Resistance Patterns in Extended-spectrum βlactamase Producing Klebsiella pneumoniae Isolates in a Razi Hospital Marand, Iran. Electronic J Biol. 2015;11(1):8-12.
  • Jafari Sales A, Mobaiyen H. Frequency and resistance patterns in clinical isolates of Escherichia coli Extended Spectrum Beta Lactamase producing treatment Centers in Marand city, Iran. NCMBJ. 2017;7(26):19-26.
  • Jafari-Sales A, Bagherizadeh Y, Arzani-Birgani P, Shirali M, Shahniani AR. Study of Antibiotic Resistance and Prevalence of bla-TEM gene in Klebsiella pneumoniae Strains isolated from Children with UTI in Tabriz Hospitals. Focus med sci j. 2018;4(1):9-13.
  • Sales AJ, Naebi S, Bannazadeh-Baghi H, Saki M. Antibiotic Resistance Pattern and Prevalence of blaOXA-51, blaNDM, blaVIM, blaPER, blaVEB, blaCTX, tetA and tetB Genes in Acinetobacter baumannii Isolated from Clinical Specimens of Hospitals in Tabriz city, Iran. J Clin Res Paramed Sci. 2021;10(2): e118521.
  • Sales AJ, Naebi S, Nasiri R, Bannazadeh-Baghi H. The antibiotic resistance pattern and prevalence of blaTEM, blaSHV, blaCTX-M, blaPSE-1, sipB/C, and cmlA/tetR genes in Salmonella typhimurium isolated from children with diarrhea in Tabriz, Iran. Int J Health Sci. 2021;7(4): e118523.
  • Jafari-Sales A, Soleimani H, Moradi L. Antibiotic resistance pattern in Klebsiella pneumoniae strains isolated from children with urinary tract infections from Tabriz hospitals. HBB. 2020;4(1):38-45.
  • Eriksen H, Iversen BG, Aavitsland P. Prevalence of nosocomial infections in hospitals in Norway, 2002 and 2003. J Hosp Infect. 2005;60(1):40-5.
  • Radan M, Moniri R, Khorshidi A, Gilasi H, Norouzi Z, Beigi F, et al. Emerging carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP among burn patients in Isfahan, Iran. Arch Trauma Res. 2016;5(3): e33664.
  • Feliziani S, Luján AM, Moyano AJ, Sola C, Bocco JL, Montanaro P, et al. Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS One. 2010;5(9):e12669.
  • Arabestani MR, Rajabpour M, Mashouf RY, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med. 2015;18(2): 102-8.
  • Walsh T. The emergence and implications of metallo‐β‐lactamases in Gram‐negative bacteria. Clin Microbiol Infect. 2005;11:2-9.
  • May TB, Shinabarger D, Maharaj R, Kato J, Chu L, DeVault JD, et al. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev. 1991;4(2):191-206.
  • Dizaji AS, Fathi R, Sales AJ. Molecular study of extended-spectrum beta-lactamase (TEM-1) gene in Escherichia Coli isolates collected from Ostad Alinasab Hospital in Tabriz Iran. MMJ. 2016;29:35-40.
  • Jafari Sales A, Mobaiyen H, Farshbafi Nezhad Zoghi J, Nezamdoost Shadbad N, Purabdollah Kaleybar V. Antimicrobial resistance pattern of extended-spectrum β-Lactamases (ESBLs) producing Escherichia coli isolated from clinical samples in Tabriz city, Iran. Adv Environ Biol. 2014;8(16):179-82.
  • Jafari-Sales A, Bagherizadeh Y, Khalifehpour M, Abdoli-senejan M, Helali-Pargali R. Antibiotic resistance pattern and bla-TEM gene expression in Acinetobacter baumannii isolated from clinical specimens of Tabriz hospitals. Zanco J Med Sci. 2019;20(65):20-9.
  • SADEGHİ-DEYLAMDEH Z, JAFARI-SALES A. Evaluation of the presence of AmpC (FOX) beta-lactamase gene in clinical strains of Escherichia coli isolated from hospitalized patients in Tabriz. J Exp Clin Med. 2021;38(3):301-4.
  • Ebrahimzadeh M, Pourbeiragh G, Jafarı-sales A, Pashazadeh M. Examining the frequency of blaCTX-M, blaTEM, and blaSHV genes in Escherichia coli isolates from patients in Tabriz hospitals, Iran. J Exp Clin Med. 2023;40(4):734-9.
  • Jafari-Sales A, Al-Khafaji NS, Al-Dahmoshi HO, Sadeghi Deylamdeh Z, Akrami S, Shariat A, et al. Occurrence of some common carbapenemase genes in carbapenem-resistant Klebsiella pneumoniae isolates collected from clinical samples in Tabriz, northwestern Iran. BMC Res Notes. 2023;16(1):311.
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-25.
  • Wilson R, Dowling RB. Pseudomonas aeruginosa and other related species. Thorax. 1998;53(3):213-9.
  • Wilke MS, Lovering AL, Strynadka NC. β-Lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol. 2005;8(5):525-33.
  • Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1.
  • Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129-35.
  • Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Invest Drugs. 2008;17(2):131-43.
  • Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014;40(8):1556-61.
  • Tan J, Pitout JD, Guttman DS. New and sensitive assay for determining Pseudomonas aeruginosa metallo-beta-lactamase resistance to imipenem. J Clin Microbiol. 2008;46(5):1870-2.
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933-51.
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211-33.
  • Patel JB. Performance standards for antimicrobial susceptibility testing: Clinical and laboratory standards institute; 2017.
  • Girlich D, Poirel L, Nordmann PJJocm. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50(2):477-9.
  • Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol. 2014;63(10):1303-10.
  • Manchanda V, Rai S, Gupta S, Rautela R, Chopra R, Rawat D, et al. Development of TaqMan real-time polymerase chain reaction for the detection of the newly emerging form of carbapenem resistance gene in clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Indian J Med Microbiol. 2011;29(3):249-53.
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597-606.
  • Lowings M, Ehlers MM, Dreyer AW, Kock MM. High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa–an update. BMC Infect Dis. 2015;15(1):1-10.
  • Ghamgosha M, Shahrekizahedani S, Kafilzadeh F, Bameri Z, Taheri RA, Farnoosh G. Metallo-beta-lactamase VIM-1, SPM-1, and IMP-1 genes among clinical Pseudomonas aeruginosa species isolated in Zahedan, Iran. Jundishapur J Microbiol. 2015;8(4):e17489.
  • Azimi L, Rastegar-Lari A, Talebi M, Ebrahimzadeh-Namvar A, Soleymanzadeh-Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol. 2013;2(3-4):26-31.
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect. 2011;70(1):119-23.
  • Rodríguez-Martínez J-M, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(11):4783-8.
  • Wang C, Wang J, Mi Z. Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamases and carrying two aminoglycoside-modifying enzymes in China. J Hosp Infect. 2006;62(4):522-4.
  • Franco MRG, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics. 2010;65(9):825-9.
  • Lee M-F, Peng C-F, Hsu H-J, Chen Y-H. Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents. 2008;32(6):475-80.
  • Sader HS, Reis A, Silbert S, Gales AC. IMPs, VIMs and SPMs: the diversity of metallo‐β‐lactamases produced by carbapenem‐resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect. 2005;11(1):73-6.
  • Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosastrains producing metallo beta lactamases from infections in burned patients and identification of blaIMP and blaVIMgenes by PCR. Iran J Med Microbiol. 2007;1(1):23-31.
  • Arunagiri K, Sekar B, Sangeetha G, John J. Detection and characterization of metallo-beta-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J. 2012;61(8):778-83.
  • Tavajjohi Z, Moniri R, Khoeshidi A. Frequency of extended-spectrum beta-lactamase (ESBL) multidrug-resistance produced by Pseudomonas aeruginosa isolated from clinical and environmental specimens in Kashan Shahid Beheshti hospital during 2010-11. KAUMS J (FEYZ). 2011;15(2):139-45.
  • Rahimi B, Shojapour M, Sadeghi A, Pourbabayi AA. The study of the antibiotic resistance pattern of Pseudomonas aeruginosa strains isolated from hospitalized patients in Arak. J Arak Uni Med Sci. 2012;15(3):8-14.
  • Salehi M, Hekmatdoost, M., Hosseini, F. Quinolone resistance associated with efllux pumps mexAB-oprM in clinical isolates of Pseudomonas aeruginosa. J Microb World, 2014; 6(4): 290-298.
  • Cavallo J, Hocquet D, Plesiat P, Fabre R, Roussel-Delvallez M. Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. J Antimicrob Chemother. 2007;59(5):1021-4.
  • Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, et al. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 1999;43(12):2877-80.
  • Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of Metallo-β-Lactamase Producing Pseudomonas aeruginosa Isolated From Burn Patients in Tehran, Iran. Lab Med. 2010;41(10):609-12.
  • Imani Foolad A, Rostami Z, Shapouri R. Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil Univ Med Sci. 2010;10(3):189-98.
  • Shirani K, Ataei B, Roshandel F. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Adv Biomed Res. 2016;5:124.
  • Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008;60(1):125-8.
  • Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of metallo-beta-lactamases in clinical isolates of pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2004;48(2):131-5.
  • Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo). 2010;65(9):825-9.
  • Doosti M, Ramazani A, Garshasbi M. Identification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran. Iran Biomed J. 2013;17(3):129-33.
  • Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol. 2009;12(1):61-6.
There are 63 citations in total.

Details

Primary Language English
Subjects Clinical Microbiology, Basic Immunology, Medical Bacteriology
Journal Section Research Article
Authors

Abolfazl Jafarı-sales 0000-0002-5710-4076

Faezeh Mehdizadeh 0000-0002-8260-7281

Golnaz Fallah 0009-0000-6646-6581

Mehrdad Pashazadeh 0000-0001-9103-6276

Hossein Bannazadeh Baghi 0000-0002-2513-5361

Publication Date September 30, 2024
Submission Date September 21, 2023
Acceptance Date July 3, 2024
Published in Issue Year 2024 Volume: 41 Issue: 3

Cite

APA Jafarı-sales, A., Mehdizadeh, F., Fallah, G., Pashazadeh, M., et al. (2024). Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals. Journal of Experimental and Clinical Medicine, 41(3), 466-473.
AMA Jafarı-sales A, Mehdizadeh F, Fallah G, Pashazadeh M, Bannazadeh Baghi H. Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals. J. Exp. Clin. Med. September 2024;41(3):466-473.
Chicago Jafarı-sales, Abolfazl, Faezeh Mehdizadeh, Golnaz Fallah, Mehrdad Pashazadeh, and Hossein Bannazadeh Baghi. “Examining the Frequency of Carbapenemase Genes BlaKPC, BlaIMP, BlaOXA-48, BlaSPM, BlaNDM, BlaVIM, BlaGES, BlaBIC, BlaAIM, BlaGIM, BlaSIM, and BlaDIM in Pseudomonas Aeruginosa Strains Isolated from Patients Hospitalized in Northwest Iran Hospitals”. Journal of Experimental and Clinical Medicine 41, no. 3 (September 2024): 466-73.
EndNote Jafarı-sales A, Mehdizadeh F, Fallah G, Pashazadeh M, Bannazadeh Baghi H (September 1, 2024) Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals. Journal of Experimental and Clinical Medicine 41 3 466–473.
IEEE A. Jafarı-sales, F. Mehdizadeh, G. Fallah, M. Pashazadeh, and H. Bannazadeh Baghi, “Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals”, J. Exp. Clin. Med., vol. 41, no. 3, pp. 466–473, 2024.
ISNAD Jafarı-sales, Abolfazl et al. “Examining the Frequency of Carbapenemase Genes BlaKPC, BlaIMP, BlaOXA-48, BlaSPM, BlaNDM, BlaVIM, BlaGES, BlaBIC, BlaAIM, BlaGIM, BlaSIM, and BlaDIM in Pseudomonas Aeruginosa Strains Isolated from Patients Hospitalized in Northwest Iran Hospitals”. Journal of Experimental and Clinical Medicine 41/3 (September 2024), 466-473.
JAMA Jafarı-sales A, Mehdizadeh F, Fallah G, Pashazadeh M, Bannazadeh Baghi H. Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals. J. Exp. Clin. Med. 2024;41:466–473.
MLA Jafarı-sales, Abolfazl et al. “Examining the Frequency of Carbapenemase Genes BlaKPC, BlaIMP, BlaOXA-48, BlaSPM, BlaNDM, BlaVIM, BlaGES, BlaBIC, BlaAIM, BlaGIM, BlaSIM, and BlaDIM in Pseudomonas Aeruginosa Strains Isolated from Patients Hospitalized in Northwest Iran Hospitals”. Journal of Experimental and Clinical Medicine, vol. 41, no. 3, 2024, pp. 466-73.
Vancouver Jafarı-sales A, Mehdizadeh F, Fallah G, Pashazadeh M, Bannazadeh Baghi H. Examining the frequency of carbapenemase genes blaKPC, blaIMP, blaOXA-48, blaSPM, blaNDM, blaVIM, blaGES, blaBIC, blaAIM, blaGIM, blaSIM, and blaDIM in Pseudomonas aeruginosa strains isolated from patients hospitalized in northwest Iran hospitals. J. Exp. Clin. Med. 2024;41(3):466-73.