Research Article
BibTex RIS Cite

Cs Simetrisindeki Trikarbonil Komplekslerinin Kuvvet Sabitlerinin Yeni Bir Metot ile Analizi

Year 2018, Volume: 8 Issue: 1, 59 - 68, 15.06.2018

Abstract

Erken
dönem çalışmalarında genellikle katalizör olarak kullanılan metal karbonil
kompleksleri, CMIA ve CORMs olarak potansiyel farmakolojik uygulamalarda
kullanıldıkları için son zamanlarda daha fazla dikkat çekmektedirler. Ayrıca
metal karboniller, orta-IR bölgesindeki özel spektroskopik özellikleri
sayesinde biyoprob ve protein etiketleme ajanı olarak kullanılmaktadır.
Karbonil komplekslerinin IR bandlarının sayısı ve yeri, karbonil ve diğer bağlı
ligandların oluşturduğu kimyasal çevreden etkilenmektedir. Metal karbonil
komplekslerinin kuvvet sabitleri, bağlı ligandların elektronik etkileri
konusunda kalitatif ve kantitatif olarak anlamlı bilgiler verebilirler. Bununla
birlikte, kuvvet sabitleri, karbonil komplekslerinin izolobal benzerliği ile
ilgili kullanışlı bir kriter olarak değerlendirilebilir. Bu çalışmada önerilen
yeni ve basit metot ile farklı ikincil ligandlar bulunduran pek çok metal
karbonil kompleksinin kuvvet ve etkileşim sabitleri, bu ligandların
σ-verici/π-alıcı özellikleri hakkında öngörü oluşturmak için hesaplanmıştır.

References

  • 1. Applegate J C, Okeowo M K, Erickson N R, Neal B M, Berrie C L, Gerasimchuk N M & Barybin M V (2016). First π-linker featuring mercapto and isocyano anchoring groups within the same molecule: synthesis, heterobimetallic complexation and self-assembly on Au(111). Chemical Science. :1–8.
  • 2. Bour P, Kubelka J & Keiderling T A (2000). Simulations of oligopeptide vibrational CD: Effects of isotopic labeling. Biopolymers 53:380–395.
  • 3. Braterman P S, Harrill R W & Kaesz H D (1964). Spectroscopic Studies of Isotopically Substituted Metal Carbonyls. Journal of the American Chemical Society 2734(50):2851–2855.
  • 4. Brimm E O, Lynch M A & Sesny W J (1954). Preparation and Properties of Manganese Carbonyl. Journal of the American Chemical Society 76(6):3831–3835.
  • 5. Carpenter A E, Mokhtarzadeh C C, Ripatti D S, Havrylyuk I, Kamezawa R, Moore C E, Rheingold A L & Figueroa J S (2015). Comparative measure of the electronic influence of highly substituted aryl isocyanides. Inorganic Chemistry 54(6):2936–2944.
  • 6. Fish R H & Jaouen G (2003). Bioorganometallic chemistry: Structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22(d):2166–2177.
  • 7. Ghaffar T, Adams H, Maitlis P M, Sunley G J, Baker M J & Haynes A (1998). Spectroscopic identification and reactivity of [Ir(CO)3I2Me], a key reactive intermediate in iridium catalysed methanol carbonylation. Chemical Communications 2:1023–1024.
  • 8. Gorfti A, Salmain M, Jaouen G, McGlinchey J, Bennouna A & Mousser A (1996). Covalent and selective labeling of proteins with heavy metals. Synthesis, X-ray structure, and reactivity studies of N-succinimidyl and N-sulfosuccinimidyl ester organotungsten complexes. Organometallics 15(10):142–151.
  • 9. Hillard E A & Jaouen G (2011). Bioorganometallics: Future trends in drug discovery, analytical chemistry, and catalysis. Organometallics 30(5):20–27.
  • 10. Kaya C, Karakaş D & Üstün E (2007). A new approach to predicting the carbonyl stretching frequencies of Co2(CO)8 with D3d symmetry. Indian Journal of Chemistry 46A:1388–1392.
  • 11. Kendall A J, Zakharov L N & Tyler D R (2016). Steric and Electronic Influences of Buchwald-Type Alkyl-JohnPhos Ligands. Inorganic Chemistry 55(6):3079–3090.
  • 12. Knör G & Monkowius U (2011). Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. Inorganic Photochemistry 63:235-289.
  • 13. Morisaki Y, Chen H & Chujo Y (2004). Synthesis and characterization of organometallic conjugated polymers containing tricarbonyl(arene)chromium unit and platinum. Journal of Organometallic Chemistry 689:2684–2689.
  • 14. Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E & Green C J (2002). Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circulation Research 90:E17–E24.
  • 15. Mula B, Beaumont A J, Doyle K O, Gallagher M L & Rooney A D (1999). Charge Transfer Complexes of Arebe-molybdenum-tricarbonyl as heterogenous metathesis catalysts for the polymerization of Phenylacetylene. Journal of Molecular Catalysis 148:23–28. 16. Salmain M, Vessiere A, Varenne A, Brossier P & Jaouen G (1999). A new application of bioorganometallics: the first simultaneous triple assay by the carbonylmetalloimmunoassay (CMIA) method. Journal of Organometallic Chemistry 589:92–97.
  • 17. Schatzschneider U (2014). Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). British journal of Pharmacology 172:1638-1650.
  • 18. Üstün E, Özgür A, Coşkun K A, Düşünceli S D, Özdemir İ & Tutar Y (2017). Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands. Transition Metal Chemistry 42(4):331–337.
  • 19. Üstün E, Ayvaz M Ç, Çelebi M S, Aşcı G, Demir S & Özdemir İ (2016). Structure, CO-releasing property, electrochemistry, DFT calculation, and antioxidant activity of benzimidazole derivative substituted [Mn(CO)3(bpy)L]PF6 type novel manganese complexes. Inorganica Chimica Acta 450:182–189.
  • 20. Üstün E & Kaya C (2010). Calculating the CO-factored force constants of tricarbonyl complexes with Cs symmetry. Journal of Organometallic Chemistry 695(19–20):2273–2276.

A New Method for Analyzing the Force Constants of Tricarbonyl Complexes with CS Symmetry

Year 2018, Volume: 8 Issue: 1, 59 - 68, 15.06.2018

Abstract

Metal carbonyl complexes that generally used as
catalyst in early researches have attracted much attention recently due to
their potential pharmaceutical applications as CMIA and CORMs. Metal carbonyls
also have used also as bioprobe, protein-labelling agent thanks to unique
spectroscopic feature in mid-IR. The position and the number of carbonyl IR
bands have affected by chemical environment of carbonyl unit and coordinated
ligands. Therefore, the force constants of metal carbonyl complexes could give
meaningful qualitative and quantitative information about the electronic
influences of the coordinated ligands. Additionally the force constants could
be useful criteria when the carbonyl ligands have evaluated in terms of
isolobal analogy. In this study, the stretching and the interaction force
constants of many metal carbonyl complexes with lots of different seconder
ligands have calculated with a new suggested simple method to gain insight into
the σ-donor/π-acceptor properties of these coordinated ligands.

References

  • 1. Applegate J C, Okeowo M K, Erickson N R, Neal B M, Berrie C L, Gerasimchuk N M & Barybin M V (2016). First π-linker featuring mercapto and isocyano anchoring groups within the same molecule: synthesis, heterobimetallic complexation and self-assembly on Au(111). Chemical Science. :1–8.
  • 2. Bour P, Kubelka J & Keiderling T A (2000). Simulations of oligopeptide vibrational CD: Effects of isotopic labeling. Biopolymers 53:380–395.
  • 3. Braterman P S, Harrill R W & Kaesz H D (1964). Spectroscopic Studies of Isotopically Substituted Metal Carbonyls. Journal of the American Chemical Society 2734(50):2851–2855.
  • 4. Brimm E O, Lynch M A & Sesny W J (1954). Preparation and Properties of Manganese Carbonyl. Journal of the American Chemical Society 76(6):3831–3835.
  • 5. Carpenter A E, Mokhtarzadeh C C, Ripatti D S, Havrylyuk I, Kamezawa R, Moore C E, Rheingold A L & Figueroa J S (2015). Comparative measure of the electronic influence of highly substituted aryl isocyanides. Inorganic Chemistry 54(6):2936–2944.
  • 6. Fish R H & Jaouen G (2003). Bioorganometallic chemistry: Structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22(d):2166–2177.
  • 7. Ghaffar T, Adams H, Maitlis P M, Sunley G J, Baker M J & Haynes A (1998). Spectroscopic identification and reactivity of [Ir(CO)3I2Me], a key reactive intermediate in iridium catalysed methanol carbonylation. Chemical Communications 2:1023–1024.
  • 8. Gorfti A, Salmain M, Jaouen G, McGlinchey J, Bennouna A & Mousser A (1996). Covalent and selective labeling of proteins with heavy metals. Synthesis, X-ray structure, and reactivity studies of N-succinimidyl and N-sulfosuccinimidyl ester organotungsten complexes. Organometallics 15(10):142–151.
  • 9. Hillard E A & Jaouen G (2011). Bioorganometallics: Future trends in drug discovery, analytical chemistry, and catalysis. Organometallics 30(5):20–27.
  • 10. Kaya C, Karakaş D & Üstün E (2007). A new approach to predicting the carbonyl stretching frequencies of Co2(CO)8 with D3d symmetry. Indian Journal of Chemistry 46A:1388–1392.
  • 11. Kendall A J, Zakharov L N & Tyler D R (2016). Steric and Electronic Influences of Buchwald-Type Alkyl-JohnPhos Ligands. Inorganic Chemistry 55(6):3079–3090.
  • 12. Knör G & Monkowius U (2011). Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. Inorganic Photochemistry 63:235-289.
  • 13. Morisaki Y, Chen H & Chujo Y (2004). Synthesis and characterization of organometallic conjugated polymers containing tricarbonyl(arene)chromium unit and platinum. Journal of Organometallic Chemistry 689:2684–2689.
  • 14. Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E & Green C J (2002). Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circulation Research 90:E17–E24.
  • 15. Mula B, Beaumont A J, Doyle K O, Gallagher M L & Rooney A D (1999). Charge Transfer Complexes of Arebe-molybdenum-tricarbonyl as heterogenous metathesis catalysts for the polymerization of Phenylacetylene. Journal of Molecular Catalysis 148:23–28. 16. Salmain M, Vessiere A, Varenne A, Brossier P & Jaouen G (1999). A new application of bioorganometallics: the first simultaneous triple assay by the carbonylmetalloimmunoassay (CMIA) method. Journal of Organometallic Chemistry 589:92–97.
  • 17. Schatzschneider U (2014). Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). British journal of Pharmacology 172:1638-1650.
  • 18. Üstün E, Özgür A, Coşkun K A, Düşünceli S D, Özdemir İ & Tutar Y (2017). Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands. Transition Metal Chemistry 42(4):331–337.
  • 19. Üstün E, Ayvaz M Ç, Çelebi M S, Aşcı G, Demir S & Özdemir İ (2016). Structure, CO-releasing property, electrochemistry, DFT calculation, and antioxidant activity of benzimidazole derivative substituted [Mn(CO)3(bpy)L]PF6 type novel manganese complexes. Inorganica Chimica Acta 450:182–189.
  • 20. Üstün E & Kaya C (2010). Calculating the CO-factored force constants of tricarbonyl complexes with Cs symmetry. Journal of Organometallic Chemistry 695(19–20):2273–2276.
There are 19 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Elvan Üstün 0000-0002-0587-7261

Cemal Kaya This is me 0000-0002-2683-1043

Publication Date June 15, 2018
Submission Date December 6, 2017
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Üstün, E., & Kaya, C. (2018). A New Method for Analyzing the Force Constants of Tricarbonyl Complexes with CS Symmetry. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 8(1), 59-68.