Research Article
BibTex RIS Cite

Akdeniz'de İki Farklı Solea solea Popülasyonunda Otolit Kütle Asimetrisinin Karşılaştırılması

Year 2018, Volume: 8 Issue: 1, 125 - 133, 15.06.2018

Abstract

Su kirliliği genel olarak okyanuslar, denizler,
nehirler, göller ve yeraltı suları gibi su kaynakları üzerinde doğal ve insan
faaliyetleri sonucu oluşmuş bir tür kirlilik olarak adlandırılabilir.
Su kirliliği balık türlerini
doğrudan ve dolaylı olarak olumsuz etkilenmektedir.
Sucul sistemdeki diğer canlılar gibi balıklar da
habitatlarında bulunan pestisitler, insektisitler ve herbisitler ve ağır
metaller gibi farklı kirleticilerden kaynaklı farklı stres türleriyle karşı
karşıyadır. Otolit kütle asimetrisinin, balıklarda çevresel stresin neden
olduğu bazı gelişimsel bozuklukları yansıtabilir.
Özellikle yüksek seviyedeki otolit kütlesi asimetrisi
balıkların yaşamını olumsuz yönde etkileyebilir, bu nedenle bu asimetrinin
belirlenmesi her balık türü için çok önemlidir. Bu çalışmanın amacı Mersin ve
İskenderun popülasyonlarındaki Solea
solea
'nın otolit kütle asimetrilerini karşılaştırmaktır. Total boyları 17,5-25,0
cm ve ağırlıkları 36,4-126,6 gr olan toplam 100 adet balık Akdeniz'den
yakalanmıştır. Asimetri, kör ve göz bölge otolitlerinin kütleleri arasındaki
fark dikkate alınarak hesaplanmıştır. Bu çalışmanın sonucunda, asimetri
değerleri, bu iki popülasyonda -0,25483 ve +0,41220 değerleri arasında
bulunmuştur. Mersin ve İskenderun popülasyonlarındaki Solea solea'nın otolit kütle asimetrisi ve mutlak otolit kütle
asimetrisi, balıkların total boyuyla ilişkili değildir.

References

  • 1. Arai T, Ohji M & Hirata T (2007). Trace metal deposition in teleost fish otolith as an environmental indicator. Water, Air, & Soil Pollution 179(1–4): 255-263.
  • 2. Bingel F (1987). Quantitative fisheries on eastern Mediterranean. Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey.
  • 3. Bostanci D, Yedier S, Kontaş S, Kurucu G, Polat N 2017. Comparison of the Otolith Mass Asymmetry in Solea solea and Trachurus mediterraneus. International Ecology Symposium 2017, 11-13 May, Kayseri, Turkey.
  • 4. Campana SE (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263-297.
  • 5. Campana SE & Thorrold SR (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58(1): 30-38.
  • 6. Campana SE (2004). Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Ottawa, Ontario: NRC Research Press.
  • 7. Froese R & Pauly D (Eds) (2017). Species list: Solea genus Fishbas website. Available at: http://www.fishbase.org/identification/SpeciesList.php?genus=Solea (accessed on 07 December 2017).
  • 8. Gronkjaer P & Sand MK (2003). Fluctuating asymmetry and nutritional condition of Baltic cod (Gadus morhua) larvae. Marine Biology 143(1):191-197.
  • 9. Gündoğdu S & Çevik C (2017). Micro- and mesoplastics in Northeast Levantine coast of Turkey: the preliminary results from surface samples. Marine Pollution Bulletin. 118(1–2): 341-347.
  • 10. Helling K, Scherer H, Hausmann S & Clarke AH (2005). Otolith mass asymmetries in the utricle and saccule of flatfish. Vestibular Research 15(2): 59-64.
  • 11. Jawad LA, Al-Mamry JM, Al-Mamari HM, Al-Yarubi MM, Al-Busaidi HK & Al-Mamary DS (2011). Otolith mass asymmetry in Rhynchorhamphus georgi (Valenciennes, 1846) (Family: Hemiramphidae) collected from the Sea of Oman. Journal of the Black Sea / Mediterranean Environment 17(1): 47-55.
  • 12. Jawad LA, Al-Mamry JM, Al-Mamari D & Al-Hasani L (2012). Study on the otolith mass asymmetry in Lutjanus bengalensis (Family: Lutjanidae) collected from Muscat City on the Sea of Oman. Journal of FisheriesSciences 6(1): 74-79.
  • 13. Jawad LA, Mehanna SF, El-Regal MAA & Ahmed YA (2012). Otolith Mass Asymmetry in Two Parrotfish Species, Chlorurus sordidus (Forsskål, 1775) and Hipposcarus harid (Forsskål, 1775) from Hurghada, Red Sea Coast of Egypt. International Journal of Marine Science 7(21): 200-204.
  • 14. Jawad LA (2013). Otolith Mass Asymmetry in Carangoides caerulepinnatus (Rüppell, 1830 (Family: Carangidae) Collected from the Sea of Oman. Croatian Journal of Fisheries 71(1): 37-41.
  • 15. Jawad LA & Sadighzadeh Z (2013). Otolith mass asymmetry in the mugilid fish, Liza klunzingeri (Day, 1888) collected from Persian Gulf near Bandar Abbas. Anales de Biología 35: 105-107.
  • 16. Lychakov DV, Boyadzhieva-Mikhailova A, Christov I, Pashchinin AN, Evdokimov II & Matkov AA (1988). Changes in the otolith apparatus of rat and fish after prolonged exposure to acceleration. Kosmicheskaya biologiya I Aviakosmicheskaya Meditsina 22: 27-33.
  • 17. Lychakov DV (1992). Morphometric studies of fish otoliths in relation to vestibular function. Zhurnal Evoliutsionnoi Biokhimii I Fiziologii 28: 531-539.
  • 18. Lychakov DV & Rebane YT (2004). Otolith mass asymmetry in 18 species of fish and pigeon. Journal of Gravitational Physiology 11(3): 17-34.
  • 19. Lychakov DV & Rebane YT (2005). Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hearing Research 201(1-2): 55-69.
  • 20. Lychakov DV, Rebane YT, Lombate A, Fuiman LA & Takabayashi T (2006). Fish Otolith asymmetry: morphometry and modelling. Hearing Research 219(1-2): 1-11.
  • 21. Lychakov DV, Rebane YT, Lombate A, Demestre M & Fuiman L (2008). Saccular otolith mass asymmetry in adult flatfishes. Journal of Fish Biology 72(10): 2579-2594.
  • 22. Lychakov DV (2013). Behavioural lateralization and otolith asymmetry. Journal of Evolutionary Biochemistry Physiology 49(4): 441-456.
  • 23. Mille T, Mahe K, Villanueva MC, De Pontual H & Ernande B (2015). Sagittal otolith morphogenesis asymmetry in marine fishes. Journal of Fish Biology 87(3): 646-663.
  • 24. Nolf D (1985). Otolith piscium. In: Schultze HP (Eds), Handbook of Paleoichthyology, Vol. 10, Sttutgart: Gustav Fisher Verlag, pp. 1-145.
  • 25. Özyurt CE, Kiyağa VB & Akamca E (2008). İskenderun Körfezi'nde Fanyalı Uzatma Ağları ile Dil Balığı Avcılığı. Ege Uninersity Journal of Fisheries & Aquatic Sciences 25(3): 233-237.
  • 26. Popper A N & Lu Z (2000). Structure-function relationships in fish otolith organs. Fisheries Research 46(1-3): 15-25.
  • 27. Takabayashi A & Ohmura-Iwasaki T (2003). Functional asymmetry estimated by measurements of otolith in fish. Biological Sciences in Space 17(4): 293-297.
  • 28. Turgut E & Özgül G (2009). Sucul Ekosistemin İzlenmesinde Kirlilik Biyoindikatörü Olarak Balık Parazitlerinin Kullanılması. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 26(1): 13-18. 29. Valentine DW, Soule ME & Samollow P (1973). Asymmetry in fishes: a possible statistical indicator of environmental stress. Fishery Bulletin 71(2): 357-370.

Comparison of Otolith Mass Asymmetry in Two Different Solea solea Populations in Mediterranean Sea

Year 2018, Volume: 8 Issue: 1, 125 - 133, 15.06.2018

Abstract

In general, water
pollution can be called as a kind of pollution resulting from natural and human
activities on water resources such as oceans, seas, rivers, lakes and ground
waters. Fish species are directly and indirectly adversely affected by water
pollution.
Like other living things in the aquatic system,
fish are confronted with different types of stresses from different pollutants
such as pesticides, insecticides, herbicides and heavy metals in their habitats
. Otolith
mass asymmetry may reflect some developmental disorders of fish caused by
environmental stress. Especially h
igh-level
otolith mass asymmetry can adversely affect fish life, so the determination of
the asymmetry is very important for each species.
The aim of the present
study to compare the otolith mass asymmetry of Solea solea from Mersin and
İskenderun populations. A total of 100 fish with
17.5-25.0cm total length and 36.4-126.6g weight were collected from the
Mediterranean Sea.
The asymmetry was
calculated considering the difference between blind and eye sides otolith
masses. In the present study, the
asymmetry
values were found within -0.25483 and +0.41220 in the populations.
The otolith mass asymmetry and absolute otolith mass asymmetry of S. solea in the Mersin and İskenderun
populations are not related to the total length

References

  • 1. Arai T, Ohji M & Hirata T (2007). Trace metal deposition in teleost fish otolith as an environmental indicator. Water, Air, & Soil Pollution 179(1–4): 255-263.
  • 2. Bingel F (1987). Quantitative fisheries on eastern Mediterranean. Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey.
  • 3. Bostanci D, Yedier S, Kontaş S, Kurucu G, Polat N 2017. Comparison of the Otolith Mass Asymmetry in Solea solea and Trachurus mediterraneus. International Ecology Symposium 2017, 11-13 May, Kayseri, Turkey.
  • 4. Campana SE (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263-297.
  • 5. Campana SE & Thorrold SR (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58(1): 30-38.
  • 6. Campana SE (2004). Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Ottawa, Ontario: NRC Research Press.
  • 7. Froese R & Pauly D (Eds) (2017). Species list: Solea genus Fishbas website. Available at: http://www.fishbase.org/identification/SpeciesList.php?genus=Solea (accessed on 07 December 2017).
  • 8. Gronkjaer P & Sand MK (2003). Fluctuating asymmetry and nutritional condition of Baltic cod (Gadus morhua) larvae. Marine Biology 143(1):191-197.
  • 9. Gündoğdu S & Çevik C (2017). Micro- and mesoplastics in Northeast Levantine coast of Turkey: the preliminary results from surface samples. Marine Pollution Bulletin. 118(1–2): 341-347.
  • 10. Helling K, Scherer H, Hausmann S & Clarke AH (2005). Otolith mass asymmetries in the utricle and saccule of flatfish. Vestibular Research 15(2): 59-64.
  • 11. Jawad LA, Al-Mamry JM, Al-Mamari HM, Al-Yarubi MM, Al-Busaidi HK & Al-Mamary DS (2011). Otolith mass asymmetry in Rhynchorhamphus georgi (Valenciennes, 1846) (Family: Hemiramphidae) collected from the Sea of Oman. Journal of the Black Sea / Mediterranean Environment 17(1): 47-55.
  • 12. Jawad LA, Al-Mamry JM, Al-Mamari D & Al-Hasani L (2012). Study on the otolith mass asymmetry in Lutjanus bengalensis (Family: Lutjanidae) collected from Muscat City on the Sea of Oman. Journal of FisheriesSciences 6(1): 74-79.
  • 13. Jawad LA, Mehanna SF, El-Regal MAA & Ahmed YA (2012). Otolith Mass Asymmetry in Two Parrotfish Species, Chlorurus sordidus (Forsskål, 1775) and Hipposcarus harid (Forsskål, 1775) from Hurghada, Red Sea Coast of Egypt. International Journal of Marine Science 7(21): 200-204.
  • 14. Jawad LA (2013). Otolith Mass Asymmetry in Carangoides caerulepinnatus (Rüppell, 1830 (Family: Carangidae) Collected from the Sea of Oman. Croatian Journal of Fisheries 71(1): 37-41.
  • 15. Jawad LA & Sadighzadeh Z (2013). Otolith mass asymmetry in the mugilid fish, Liza klunzingeri (Day, 1888) collected from Persian Gulf near Bandar Abbas. Anales de Biología 35: 105-107.
  • 16. Lychakov DV, Boyadzhieva-Mikhailova A, Christov I, Pashchinin AN, Evdokimov II & Matkov AA (1988). Changes in the otolith apparatus of rat and fish after prolonged exposure to acceleration. Kosmicheskaya biologiya I Aviakosmicheskaya Meditsina 22: 27-33.
  • 17. Lychakov DV (1992). Morphometric studies of fish otoliths in relation to vestibular function. Zhurnal Evoliutsionnoi Biokhimii I Fiziologii 28: 531-539.
  • 18. Lychakov DV & Rebane YT (2004). Otolith mass asymmetry in 18 species of fish and pigeon. Journal of Gravitational Physiology 11(3): 17-34.
  • 19. Lychakov DV & Rebane YT (2005). Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hearing Research 201(1-2): 55-69.
  • 20. Lychakov DV, Rebane YT, Lombate A, Fuiman LA & Takabayashi T (2006). Fish Otolith asymmetry: morphometry and modelling. Hearing Research 219(1-2): 1-11.
  • 21. Lychakov DV, Rebane YT, Lombate A, Demestre M & Fuiman L (2008). Saccular otolith mass asymmetry in adult flatfishes. Journal of Fish Biology 72(10): 2579-2594.
  • 22. Lychakov DV (2013). Behavioural lateralization and otolith asymmetry. Journal of Evolutionary Biochemistry Physiology 49(4): 441-456.
  • 23. Mille T, Mahe K, Villanueva MC, De Pontual H & Ernande B (2015). Sagittal otolith morphogenesis asymmetry in marine fishes. Journal of Fish Biology 87(3): 646-663.
  • 24. Nolf D (1985). Otolith piscium. In: Schultze HP (Eds), Handbook of Paleoichthyology, Vol. 10, Sttutgart: Gustav Fisher Verlag, pp. 1-145.
  • 25. Özyurt CE, Kiyağa VB & Akamca E (2008). İskenderun Körfezi'nde Fanyalı Uzatma Ağları ile Dil Balığı Avcılığı. Ege Uninersity Journal of Fisheries & Aquatic Sciences 25(3): 233-237.
  • 26. Popper A N & Lu Z (2000). Structure-function relationships in fish otolith organs. Fisheries Research 46(1-3): 15-25.
  • 27. Takabayashi A & Ohmura-Iwasaki T (2003). Functional asymmetry estimated by measurements of otolith in fish. Biological Sciences in Space 17(4): 293-297.
  • 28. Turgut E & Özgül G (2009). Sucul Ekosistemin İzlenmesinde Kirlilik Biyoindikatörü Olarak Balık Parazitlerinin Kullanılması. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 26(1): 13-18. 29. Valentine DW, Soule ME & Samollow P (1973). Asymmetry in fishes: a possible statistical indicator of environmental stress. Fishery Bulletin 71(2): 357-370.
There are 28 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Serdar Yedier 0000-0003-0017-3502

Derya Bostancı This is me 0000-0003-3052-9805

Seda Kontaş This is me 0000-0002-6582-6722

Gülşah Kurucu This is me 0000-0002-1463-0674

Nazmi Polat This is me 0000-0001-9785-9927

Publication Date June 15, 2018
Submission Date January 4, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Yedier, S., Bostancı, D., Kontaş, S., Kurucu, G., et al. (2018). Comparison of Otolith Mass Asymmetry in Two Different Solea solea Populations in Mediterranean Sea. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 8(1), 125-133.