The Detection of Fractal Dimension with Protective Effects of Lycopene and Catechin Carbon Tetrachloride-Treated Rat's Liver
Year 2015,
Volume: 37 Issue: 1, 14 - 21, 05.11.2015
Hülyam Kurt
,
Hilmi Özden
,
Bünyamin Demir
Mustafa Saltan
,
Derya Üstüner
,
Dilek Burukoğlu
,
Mehmet Üstüner
,
İrfan Değirmenci
Abstract
Our aim is to investigate the detection of fractal dimension (Box-counting dimensions) with protective effects of lycopene and catechin in carbon tetrachloride-treated rat's liver. Fractal dimension measure intensity and complexity of subject. The rats were divided into six groups as liquid oil, lycopene, catechin, carbon tetrachloride plus lycopene, carbon tetrachloride plus catechin and carbon tetrachloride. The tissue samples were obtained at end of 2İst day. The liver tissue distortions were evaluated using hematoxylin and eosin staining. The regions of hepatocyte were separated into Small Square under light microscopy. Then, counted at least one nucleus with intersection of one square. Fractal dimension were determined by using this formula; ln(N(n))/ln(2n). Notably, there was no difference between control and catechin-treated rats on fractal dimension values. But, a lycopene value was bigger than control and catechin administrated rats. In carbon tetrachloride-treated rat, fractal dimension is less. It was increased in lycopene plus carbon tetrachloride and catechin plus carbon tetrachloride with compare to carbon tetrachloride group. The findings confirmed, if hepatocyte is less, fractal dimension will decrease On other hand, carbon tetrachloride decreased fractal dimension due to less hepatocyte. It was increased in fractal dimension due to high hepatocyte in catechin and lycopene treated rats, because of their protective effects. This study is combination of medicine and mathematics, as fractal dimension. It was calculated, toxicity and protective effects of antioxidant materials could be determined in this way.
References
- Kerenjı, A.S. Bozovıc, Z.l. Tasıc, M.M. Budımlıja, Z.M. Klem, L.A. Polzovıc, A.F. (2000). Fractal dimension of hepatocytes’ nuclei in normal liver vs hepatocellular carcinoma (HCC) in human subjects -preliminary results. Archive of Oncology. 8(2):47- 50.
- Pope, A.M. Rall, D.P. (1995) (4). Enviromental medicine: Integrating a missing element in to medical education. U.S. National Academy Press, 8: 249-266.
- Wu, Y. Li, L. Wen, T. Li, Y.Q. (2007). Protective effects of echinacoside on carbon tetrachloride- induced hepatotoxicity in rats. Toxicology. 232: 50– 56.
- Eastmond, D.A. (2008). Evaluating genotoxicity data to identify a mode of action and its application in estimating cancer risk at low doses: a case study involving carbon tetrachloride. Environ Mol Mutagen. 49: 132-141. 5. Altuğ, T. Apaydın, B.B. Çerçel, A. Bayrak, İ. İlvanlı Ş. İkitimur, E, Girgin, U. (2001). Catechin’nin Sıçanlarda NMU ile Oluşturulan Meme Karsinomu Üzerine Koruyucu Etkisi. Meme Hastalıkları Dergisi. 8 (1): 5-10.
- Pellegrini, N. Riso, P. Porrini, M. (2000). Tomato Consumption Antioxidant Capacity of Plasma. Nutrition. 16: 268- 271. Affect the Total
- Peterson, J. Dwyer, J. (1998). Flavonoids: Dietary Occurrence and Biochemical Activity, Nutrition Research. 18(12): 1995-2018.
- Soleas, G.J. Grass, L. Josephy, P.D. Goldberg, D.M. Diamandis, E.P. (2002). A Comparison of the Anticarcinogenic Properties of Four Red Wine Polyphenols. Clinical Biochemistry. 35: 119-124.
- Stahl, W. Sies, H. (1996). Perspectives in Biochemistry and Biophysıcs Lycopene; A Biological Important Carotenoid for Humans. Arch Biochem Biophys. 336: 1-9.
- Leal, M. Shimada, A. Ruiz, F. Gonzalez De Mejia, E. (1999). Effect of Lycopene on Lipid Peroxidation and Glutathione-Dependent Enzymes İnduced by T-2 Toxin in Vivo. Toxicology Letters. 109: 1-10.
- Matos, H.R. Capelozzi, V.L. Gomes, O.F. Di Mascio, P. Medeiros, M.H.G. (2001). Lycopene Inhibits DNA Damage and Liver Necrosis in Rats Treated with Ferric Nitrilotriacetate. Arch Biochem Biophysics. 396: 171-177.
- Lin, C.H. Chen, B.H. (2005). Stability of carotenoids in tomato juice during storage. Food Chem. 90: 837–846.
- Ogura, R. Ikeda, N. Yuki, K. et al. (2008). Genotoxicity studies on green tea catechin. Food Chem Toxicol. 46(6): 2190-2200.
- Chandra, K.V.P. Mohana, Y. Harab, S.K. Naginia, A.S. (2005). Comparative evaluation of the chemopreventive efficancy of green and black tea polyphenols in the hamster buccal pouch carcinogenesis model. Clin Biochem. 38: 879-886.
- Elbling, L. Weiss, R.M. Teufelhofer, O. et al. (2005). Green tea extracarbon tetrachloride and epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant acarbon tetrachlorideivities The FASEB Journal Express Article. 28: 2005.
- Uppal,S.O.Voronine,D.V.Wendt,E. Heckman,C.A.( 2010).Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and agents. Microsc Microanal. 16:472-7. -depolymerizing
- Fred´eric, M. Daniel, C. Jianhua, WE. Et al. (2002). Fractal Dimension Can Distinguish Models and Pharmacologic Changes in Liver Fibrosis in Rats Hepatology. 36:4.
- Feldmann, G. (1995). Critical analysis of the methods used to morphologically quantify hepatic fibrosis. J Hepatol. 22:49-54.
- Streba, C.T.D. Pirici, C.C. Vere, L. et al. (2011). Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Rom J Morphol Embryol. 52(3):845–854.
- Uppal, S.O. Voronine, D.V. Wendt, E. Heckman C.A. (2010). Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and agents. Microsc Microanal. 16(4):472-7. -depolymerizing
- Streba, C.T.D. Pirici, C.C. Vere, L. et al. (2011). Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis Rom J Morphol Embryol. 52(3):845–854. 22. Olefirenko,
- A.A. Lutsenko, V.S. analysis
- of fractal [corrected]
- of liver structure and function in rats in vivo. Bull
- Exp Biol Med. 147(2):273-6. (2009). for evaluation
- Delides, A. Panayiotides, I. Alegakis, A. et al. (2005). Fractal dimension as a prognostic factor for laryngeal carcinoma. Anticancer Research. 25: 2141–2144.
- Goutzanis, L. Papadogeorgakis, N. Pavlopoulos P.M. et al. (2008). Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma. Oral Oncology. 44:345–353.
- Dioguardi, N. Grizzi, F. Franceschini, B. Et al. (2006). Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Gastroenterology. 12: 2187–2194. World Journal of
- Dioguardi, N. Franceschini, B. Aletti, G. et al. (2003). Fractal dimension rectified meter for quantification of liver fibrosis and other irregular microscopic objects. Analytical and Quantitative Cytology and Histology. 25: 312–320.
- Gheonea, D.I. Streba, C.T. Vere, C.C. et al. (2014). Diagnosis System for Hepatocellular Carcinoma Based on Fractal Dimension of Morphometric Elements Integrated in an Artificial Neural Network. BioMed Research International. 2014, epub.
- Carlston, J.R. Bauer, B.A. Vincent, A. et al. (2007). Reading the tea leaves. Anticarsinogenic properties of (-) epigallocatechin 3 gallate. Mayo Clin Proc. 82: 725-732.
- Bhuvaneswari, V. Nagini, S. (2005). Lycopene: a prewiev of its potential as an anticancer agent. Curr Med Chem Anticancer Agents. 5: 627-635.
The Detection of Fractal Dimension with Protective Effects of Lycopene and Catechin Carbon Tetrachloride-Treated Rat's Liver
Year 2015,
Volume: 37 Issue: 1, 14 - 21, 05.11.2015
Hülyam Kurt
,
Hilmi Özden
,
Bünyamin Demir
Mustafa Saltan
,
Derya Üstüner
,
Dilek Burukoğlu
,
Mehmet Üstüner
,
İrfan Değirmenci
Abstract
Amacımız karbon tetraklorür uygulanmış sıçan karaciğerinde likopen ve kateşinin koruyucu etkilerinin fraktal boyut hesaplaması kullanılarak ortaya konmasıdır. Fraktal boyut nesnenin yoğunluğunu ve karmaşıklığını ölçer. Sıçanlar; sıvı yağ, likopen, kateşin, karbon tetraklorür + likopen, karbon tetraklorür + kateşin ve karbon tetraklorür olmak üzere altı gruba ayrıldı. Doku örnekleri 21. gün sonunda elde edildi. Karaciğer dokusundaki harabiyet, hematoksilen ve eozin boyama ile değerlendirildi. Hepatosit bölgeleri ışık mikroskobu altında küçük karelere ayrıldı. Sonra en az bir nükleusun bir kareyle kesiştiği alan sayıldı. Fraktal boyut ln(N(n))/ln(2n) formülle hesaplandı. Özellikle, fraktal boyut değerleri açısından kontrol ve kateşin ile tedavi edilen gruplar arasında bir fark yoktu. Ama likopen değerleri kontrol ve kateşin uygulanan sıçanlarda daha yüksek bulundu. Karbon tetraklorür uygulanmış sıçanlarda fraktal boyut düşüktü. Karbon tetraklorür uygulanmış gruba göre karbon tetraklorür + likopen ve karbon tetraklorür + kateşin gruplarında fraktal boyutta artış gözlendi. Bulgular hepatosit miktarındaki azalmanın, fraktal boyutun azalmaya neden olacağını göstermiştir. Diğer taraftan, karbon tetraklorür hepatositlerin az olması nedeniyle fraktal boyutu azaltmıştır. Kateşin ve likopen uygulanan gruplarda yüksek hepatosit miktarına bağlı olarak fraktal boyutta artış görüldü. Bu çalışma fraktal boyut kullanılarak tıp ve matematiği birleştirmektedir. Bu hesaplamalar doğrultusunda, antioksidan maddelerin toksisite ve koruyucu etkisi tespit edilebilir.
References
- Kerenjı, A.S. Bozovıc, Z.l. Tasıc, M.M. Budımlıja, Z.M. Klem, L.A. Polzovıc, A.F. (2000). Fractal dimension of hepatocytes’ nuclei in normal liver vs hepatocellular carcinoma (HCC) in human subjects -preliminary results. Archive of Oncology. 8(2):47- 50.
- Pope, A.M. Rall, D.P. (1995) (4). Enviromental medicine: Integrating a missing element in to medical education. U.S. National Academy Press, 8: 249-266.
- Wu, Y. Li, L. Wen, T. Li, Y.Q. (2007). Protective effects of echinacoside on carbon tetrachloride- induced hepatotoxicity in rats. Toxicology. 232: 50– 56.
- Eastmond, D.A. (2008). Evaluating genotoxicity data to identify a mode of action and its application in estimating cancer risk at low doses: a case study involving carbon tetrachloride. Environ Mol Mutagen. 49: 132-141. 5. Altuğ, T. Apaydın, B.B. Çerçel, A. Bayrak, İ. İlvanlı Ş. İkitimur, E, Girgin, U. (2001). Catechin’nin Sıçanlarda NMU ile Oluşturulan Meme Karsinomu Üzerine Koruyucu Etkisi. Meme Hastalıkları Dergisi. 8 (1): 5-10.
- Pellegrini, N. Riso, P. Porrini, M. (2000). Tomato Consumption Antioxidant Capacity of Plasma. Nutrition. 16: 268- 271. Affect the Total
- Peterson, J. Dwyer, J. (1998). Flavonoids: Dietary Occurrence and Biochemical Activity, Nutrition Research. 18(12): 1995-2018.
- Soleas, G.J. Grass, L. Josephy, P.D. Goldberg, D.M. Diamandis, E.P. (2002). A Comparison of the Anticarcinogenic Properties of Four Red Wine Polyphenols. Clinical Biochemistry. 35: 119-124.
- Stahl, W. Sies, H. (1996). Perspectives in Biochemistry and Biophysıcs Lycopene; A Biological Important Carotenoid for Humans. Arch Biochem Biophys. 336: 1-9.
- Leal, M. Shimada, A. Ruiz, F. Gonzalez De Mejia, E. (1999). Effect of Lycopene on Lipid Peroxidation and Glutathione-Dependent Enzymes İnduced by T-2 Toxin in Vivo. Toxicology Letters. 109: 1-10.
- Matos, H.R. Capelozzi, V.L. Gomes, O.F. Di Mascio, P. Medeiros, M.H.G. (2001). Lycopene Inhibits DNA Damage and Liver Necrosis in Rats Treated with Ferric Nitrilotriacetate. Arch Biochem Biophysics. 396: 171-177.
- Lin, C.H. Chen, B.H. (2005). Stability of carotenoids in tomato juice during storage. Food Chem. 90: 837–846.
- Ogura, R. Ikeda, N. Yuki, K. et al. (2008). Genotoxicity studies on green tea catechin. Food Chem Toxicol. 46(6): 2190-2200.
- Chandra, K.V.P. Mohana, Y. Harab, S.K. Naginia, A.S. (2005). Comparative evaluation of the chemopreventive efficancy of green and black tea polyphenols in the hamster buccal pouch carcinogenesis model. Clin Biochem. 38: 879-886.
- Elbling, L. Weiss, R.M. Teufelhofer, O. et al. (2005). Green tea extracarbon tetrachloride and epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant acarbon tetrachlorideivities The FASEB Journal Express Article. 28: 2005.
- Uppal,S.O.Voronine,D.V.Wendt,E. Heckman,C.A.( 2010).Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and agents. Microsc Microanal. 16:472-7. -depolymerizing
- Fred´eric, M. Daniel, C. Jianhua, WE. Et al. (2002). Fractal Dimension Can Distinguish Models and Pharmacologic Changes in Liver Fibrosis in Rats Hepatology. 36:4.
- Feldmann, G. (1995). Critical analysis of the methods used to morphologically quantify hepatic fibrosis. J Hepatol. 22:49-54.
- Streba, C.T.D. Pirici, C.C. Vere, L. et al. (2011). Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Rom J Morphol Embryol. 52(3):845–854.
- Uppal, S.O. Voronine, D.V. Wendt, E. Heckman C.A. (2010). Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and agents. Microsc Microanal. 16(4):472-7. -depolymerizing
- Streba, C.T.D. Pirici, C.C. Vere, L. et al. (2011). Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis Rom J Morphol Embryol. 52(3):845–854. 22. Olefirenko,
- A.A. Lutsenko, V.S. analysis
- of fractal [corrected]
- of liver structure and function in rats in vivo. Bull
- Exp Biol Med. 147(2):273-6. (2009). for evaluation
- Delides, A. Panayiotides, I. Alegakis, A. et al. (2005). Fractal dimension as a prognostic factor for laryngeal carcinoma. Anticancer Research. 25: 2141–2144.
- Goutzanis, L. Papadogeorgakis, N. Pavlopoulos P.M. et al. (2008). Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma. Oral Oncology. 44:345–353.
- Dioguardi, N. Grizzi, F. Franceschini, B. Et al. (2006). Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Gastroenterology. 12: 2187–2194. World Journal of
- Dioguardi, N. Franceschini, B. Aletti, G. et al. (2003). Fractal dimension rectified meter for quantification of liver fibrosis and other irregular microscopic objects. Analytical and Quantitative Cytology and Histology. 25: 312–320.
- Gheonea, D.I. Streba, C.T. Vere, C.C. et al. (2014). Diagnosis System for Hepatocellular Carcinoma Based on Fractal Dimension of Morphometric Elements Integrated in an Artificial Neural Network. BioMed Research International. 2014, epub.
- Carlston, J.R. Bauer, B.A. Vincent, A. et al. (2007). Reading the tea leaves. Anticarsinogenic properties of (-) epigallocatechin 3 gallate. Mayo Clin Proc. 82: 725-732.
- Bhuvaneswari, V. Nagini, S. (2005). Lycopene: a prewiev of its potential as an anticancer agent. Curr Med Chem Anticancer Agents. 5: 627-635.