Research Article
BibTex RIS Cite

Evaluation of Factors Affecting Development of Radiation Pneumonitis after Radiotherapy in Patients with Lung Cancer

Year 2017, Volume: 39 Issue: 3, 35 - 43, 12.10.2017
https://doi.org/10.20515/otd.318366

Abstract

Abstract: In this
single-institution prospective study, we aimed to evaluate factors affecting
the development of radiation pneumonitis (RP) in patients with lung cancer following
3D conformal radiotherapy (3D-CRT) with normal dose-volume histograms (DVH)
limits. This study included 41 patients with lung cancer who received
definitive 3D-CRT between February 2012 and July 2013. Thirty (73.2%) of these
patients underwent concurrent chemotherapy, while eight (19.5%) underwent
adjuvant radiotherapy (RT). The median RT dose was 60 (range: 30-64) Gy. The
relationships between RP evolution and various treatment-related factors,
including DVH parameters, levels of pretreatment diffusing capacity of carbon
monoxide (DLCO), serum procalcitonin, CRP, and TGF-β1 were analyzed.
Within the follow-up period (median: 8 months, range: 6-24 months), RP occurred
in 15 (36.6%) patients (grade I in 11 patients and grade II in 4 patients) and
only 2 patients received steroid therapy (methylprednisolone 1 mg/kg/day).
Univariate analysis revealed that lymph node involvement status, DLCO,
and pretreatment serum procalcitonin levels were significantly associated with
RP incidence (p=0.018, 0.045, and 0.001, respectively). However, multivariate
analysis of the same factors indicated that only pretreatment serum
procalcitonin level was significantly associated with RP incidence (p=0.027).
In conclusion, our current data indicate that pretreatment serum procalcitonin
level can be used to predict RP in patients with lung cancer who are treated
with 3D-CRT with normal DVH limits.

References

  • Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN 2002: cancer incidence. Mortality and prevalence worldwide. IARC cancer base no. 5, version 2.0. Lyon (France): IARC Press; 2004.
  • Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Cancer incidence in five continents, volume VIII. IARC Scientific Publication No. 155. Lyon (France): International Agency for Research on Cancer; 2002.
  • Blot WJ, Fraumeni JF, Jr. Cancers of the lung and pleura. In: Schottenfeld D, Fraumeni JF, Jr., editors. Cancer epidemiology and prevention (second edition). Oxford University Press, New York, 1996, pp 637-65.
  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. 2002. CA Cancer J Clin 2005;55:74-108.
  • Warde P, Payne D. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 1992;10:890-895.
  • Komaki R, Cox JD, Hartz AJ, Byhardt RW, Perez-Tamayo C, Clowry L, Choi H, Wilson F, Lopes da Conceicao A, Rangala N. Characteristics of long-term survivors after treatment for inoperable carcinoma of the lung. Am J Clin Oncol 1985;8:362-370.
  • Pignon JP, Arriagada R, Ihde DC, Johnson DH, Perry MC, Souhami RL, Brodin O, Joss RA, Kies MS, Lebeau B. A Meta-Analysis of Thoracic Radiotherapy for Small-Cell Lung Cancer. N Engl J Med 1992;327:1618-1624.
  • Lally BE, Zelterman D, Colasanto JM, Haffty BG, Detterbeck FC, Wilson LD. Postoperative Radiotherapy for Stage II or III Non–Small-Cell Lung Cancer Using the Surveillance, Epidemiology, and End Results Database. J Clin Oncol 2006;24:2998-3006.
  • Douillard JY, Rosell R, De Lena M, Riggi M, Hurteloup P, Mahe MA; Adjuvant Navelbine International Trialist Association. Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. Int J Radiat Oncol Biol Phys 2008;72:695-701.
  • Patout M, Salaün M, Brunel V, Bota S, Cauliez B, Thiberville L. Diagnostic and prognostic value of serumprocalcitonin concentrations in primary lung cancers. Clinical Biochemistry 2014;47:263-267.
  • Avrillon V, Locatelli-Sanchez M, Folliet L, Carbonnaux M, Perino E, Fossard G, Desseigne M, Freymond N, Geriniere L, Perrot E, Souquet PJ, Couraud S. Lung cancer may increase serum procalcitonin level. Infect Disord Drug Targets 2015;15:57-63.
  • Burger A, Loffler H, Bamberg M, Rodemann HP. Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 1998;73:401-408.
  • Hakenjos L, Bamberg M, Rodemann HP. TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 2000;76:503-509.
  • Kong FM, Ao X, Wang L, Lawrence TS. The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control 2008;15:140-150.
  • Zhao L, Wang L, Ji W, Wang X, Zhu X, Hayman JA, Kalemkerian GP, Yang W, Brenner D, Lawrence TS, Kong FM. Elevation of plasma TGFbeta1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys 2009:74:1385-1390.
  • Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y, Lan J, Liu S, Sun L, Jia L, Mo X, Li J. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther 2013;21:456-465.
  • Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33:99-109.
  • Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 1997;29:79-89.
  • Grande JP. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 1997:214:27-40.
  • Anscher MS, Murase T, Prescott DM, Marks LB, Reisenbichler H, Bentel GC, Spencer D, Sherouse G, Jirtle RL. Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994;30:671-676.
  • Beck LS, DeGuzman L, Lee WP, Xu Y, Siegel MW, Amento EP. One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest 1993;92:2841-2849.
  • McDonald S, Rubin P, Constine L. Biochemical markers as predictors for pulmonary effects of radiation. Rad Oncol Invest 1995;3:56-63.
  • Anscher MS, Thrasher B, Rabbani Z, Teicher B, Vujaskovic Z: Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys, 65: 876-881, 2006.
  • Gopal R, Tucker SL, Komaki R, Liao Z, Forster KM, Stevens C, Kelly JF, Starkschall G. The relationship between local dose and loss of function for irradiated lung. Int J Radiat Oncol Biol Phys 2003;56:106-113.
  • Liao ZX, Travis EL, Tucker SL. Damage and morbidity from pneumonitis after irradiation of partial volumes of mouse lung. Int J Radiat Oncol Biol Phys 1995;32:1359-1370.
  • Tucker SL, Liao ZX, Travis EL. Estimation of the spatial distribution of target cells for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 1997;38:1055-1066.
  • Travis EL, Liao ZX, Tucker SL. Spatial heterogeneity of the volume effect for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 1997;38:1045-1054,.
  • Yamada M, Kudoh S, Hirata K, Nakajima T, Yoshikawa J. Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer 1998;34:71-75.
  • Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, Burman CM, Leibel SA, Ling CC. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small cell lung cancerpatients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002;54:329-339.
  • Hopa AJ, Lindsay PE, El Naqa I, Alaly JR, Vicic M, Bradley JD, Deasy JO. Modeling radiation pneumonitis risk with clinical, dosimetric and spatial parameters. Int J Radiat Oncol Biol Phys 2006;65:112-124.
  • Choi N, Kanarek D, Kazemi H. Physiologic changes in pulmonary function after thoracic radiotherapy for patients with lung cancer and role of regional pulmonary function studies in predicting postradiotherapy pulmonary function before radiotherapy. Cancer Treat Symp 1985;2:119-130.
  • Brady LW, Germon PA, Cander L. The effects of radiation therapy on pulmonary function in carcinoma of the lung. Radiology 1965;85:130-134.
  • Cox JD, Komaki R, Byhardt RW. Is immediate chest radiotherapy obligatory for any or all patients with limited-stage non– small cell carcinoma of the lung? Yes. Cancer Treat Rep 1983;67:327-331.
  • Cox JD. Fractionation: a paradigm for clinical research in radiation oncology. Int J Radiat Oncol Biol Phys 1987;13:1271-1281.
  • Cox JD, Azarnia N, Byhardt RW, Shin KH, Emami B, Pajak TF. A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non–small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 1999;8:1543-1555.
  • Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA. Clinical dose volume histogram analaysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Physic 1999;45:323-329.
  • Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Radiation- induced pulmonart toxicity. A dose-volume histogram analysis in patients in 201 patients with lung caner. Int J Radiat Oncol Biol Phys 2001;51:650-659.
  • Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, Mohan R, Cox JD, Komaki R. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006;66:1399-1407.
  • Bradley JD, Hope A, El Naqa I, Apte A, Lindsay PE, Bosch W, Matthews J, Sause W, Graham MV. A nomogram to predict radiation pneumonitis derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys 2007;69:985-992.
  • Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI. İncidence of radiation pneumonitis after thoracic irradiation. Dose –volume corraletes. Int J Radiat Oncol Biol Phys 2007;67:410-416.
  • Armstrong J, Raben A, Zelefsky M, Burt M, Leibel S, Burman C, Kutcher G, Harrison L, Hahn C, Ginsberg R, Rusch V, Kris M, Fuks Z. Promising survival with three- dimensional conformal radiation therapy for non-small cell lung cancer. Radiother Oncol 1997;44:12-22.
  • Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, Kado T, Takada Y. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 2003;55:110-115.
  • Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, Turrisi A, Lichter A, Fraass B, Eisbruch A, Lawrence TS, Ten Haken RK. Final toxicity results of a radiation –dose escalation study in patients with non-small cell lung cancer (NSCLC). Predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006;65:1075-1086.
  • Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B. Toxicity and outcome results of RTOG 9311: A phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small cell lung cancinoma. Int J Radiat Oncol Biol Phys 2005;61:318-328.
  • Hayman JA, Martel MK, Ten Haken RK, Normolle DP, Todd RF 3rd, Littles JF, Sullivan MA, Possert PW, Turrisi AT, Lichter AS. Dose escalation in non-small cell lung cancer using three- dimensional conformal radiation therapy. Update of a phase I trial. J. Clin Oncol 2001;19:127-136.
  • Narayan S, Henning Gt, Ten Haken RK, Sullivan MA, Martel MK, Hayman JA. Results following treatment to doses of 92.4 or 102.9 Gy on a phase Idoseescalation study for non-small cell lung cancer. Lung Cancer 2004;44:79-88.
  • Rosenzweig KE, Mychalezak B, Fuks Z, Hanley J, Burman C, Ling CC, Armstrong J, Ginsberg R, Kris MG, Raben A, Leibel S. Final Report of the 70.2- Gy and 75.6-Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 2000;6:82-87.
  • Ten Haken RK, Martel MK, Kessler ML, Hazuka MB, Lawrence TS, Robertson JM, Turrisi AT, Lichter AS. Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 1993;27:689-695.
  • Seppenwoolde Y, Lebesque JV, De Jaeger K, Belderbos JS, Boersma LJ, Schilstra C, Henning GT, Hayman JA, Martel MK, Ten Haken RK. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys 2003;55:724-735.

Radyoterapi Uygulanan Akciğer Kanseri Tanılı Vakalarda Radyasyon Pnömonisi Gelişimini Etkileyen Faktörler

Year 2017, Volume: 39 Issue: 3, 35 - 43, 12.10.2017
https://doi.org/10.20515/otd.318366

Abstract

Öz: Bu tek merkezli
prospektif çalışmada 3 boyutlu konformal radyoterapi (3BKRT) ile tedavi edilen
ve normal doz-volüm histogramına (DVH) sahip akciğer kanseri tanılı hastalarda
radyasyon pnömonisi (RP) gelişimini etkileyen faktörleri değerlendirmeyi
amaçlandı. Çalışmaya Şubat 2012-Temmuz 2013 tarihleri arasında küratif 3BKRT
uygulanan 41 akciğer kanseri tanılı hasta dahil edildi. Otuz (%73,2) hastaya eş
zamanlı kemoterapi verildi. Sekiz (%19,5) hastaya adjuvant radyoterapi (RT)
uygulandı. Medyan RT dozu 60 (30-64) Gy idi. Tedavi sonrası RP gelişimi ile DVH
parametreleri, tedavi öncesi karbon monoksit difüzyon kapasitesi (DLCO), serum
prokalsitonin, CRP ve TGF-β1 seviyeleri gibi hastaya özgü faktörler arasındaki
ilişki analiz edildi. Medyan 8 (6-24) aylık takip süresi içerisinde 15 (%36,6)
hastada RP gelişti (11 hastada grade I, 4 hastada grade II) ve sadece 2 hastaya
steroid (1 mg/kg/gün metilprednizolon) tedavisi uygulandı. Tek değişkenli
analizde lenf nodu tutulumu, DLCO ve tedavi öncesi serum prokalsitonin düzeyinin
RP gelişimi üzerine etkisi gösterildi (sırasıyla, p=0.018, 0,045, 0.001). Çok
değişkenli analizde sadece tedavi öncesi serum prokalsitonin düzeyi ile
istatistiksel anlamlı ilişki mevcut idi (p=0.027). Sonuç olarak tedavi öncesi
serum prokalsitonin düzeyi 3BKRT ile tedavi edilen ve normal DVH değerlerine
sahip akciğer kanseri tanılı hastalarda RP gelişimini tahmin etmede faydalı
olabilir. 

References

  • Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN 2002: cancer incidence. Mortality and prevalence worldwide. IARC cancer base no. 5, version 2.0. Lyon (France): IARC Press; 2004.
  • Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Cancer incidence in five continents, volume VIII. IARC Scientific Publication No. 155. Lyon (France): International Agency for Research on Cancer; 2002.
  • Blot WJ, Fraumeni JF, Jr. Cancers of the lung and pleura. In: Schottenfeld D, Fraumeni JF, Jr., editors. Cancer epidemiology and prevention (second edition). Oxford University Press, New York, 1996, pp 637-65.
  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. 2002. CA Cancer J Clin 2005;55:74-108.
  • Warde P, Payne D. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 1992;10:890-895.
  • Komaki R, Cox JD, Hartz AJ, Byhardt RW, Perez-Tamayo C, Clowry L, Choi H, Wilson F, Lopes da Conceicao A, Rangala N. Characteristics of long-term survivors after treatment for inoperable carcinoma of the lung. Am J Clin Oncol 1985;8:362-370.
  • Pignon JP, Arriagada R, Ihde DC, Johnson DH, Perry MC, Souhami RL, Brodin O, Joss RA, Kies MS, Lebeau B. A Meta-Analysis of Thoracic Radiotherapy for Small-Cell Lung Cancer. N Engl J Med 1992;327:1618-1624.
  • Lally BE, Zelterman D, Colasanto JM, Haffty BG, Detterbeck FC, Wilson LD. Postoperative Radiotherapy for Stage II or III Non–Small-Cell Lung Cancer Using the Surveillance, Epidemiology, and End Results Database. J Clin Oncol 2006;24:2998-3006.
  • Douillard JY, Rosell R, De Lena M, Riggi M, Hurteloup P, Mahe MA; Adjuvant Navelbine International Trialist Association. Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. Int J Radiat Oncol Biol Phys 2008;72:695-701.
  • Patout M, Salaün M, Brunel V, Bota S, Cauliez B, Thiberville L. Diagnostic and prognostic value of serumprocalcitonin concentrations in primary lung cancers. Clinical Biochemistry 2014;47:263-267.
  • Avrillon V, Locatelli-Sanchez M, Folliet L, Carbonnaux M, Perino E, Fossard G, Desseigne M, Freymond N, Geriniere L, Perrot E, Souquet PJ, Couraud S. Lung cancer may increase serum procalcitonin level. Infect Disord Drug Targets 2015;15:57-63.
  • Burger A, Loffler H, Bamberg M, Rodemann HP. Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 1998;73:401-408.
  • Hakenjos L, Bamberg M, Rodemann HP. TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 2000;76:503-509.
  • Kong FM, Ao X, Wang L, Lawrence TS. The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control 2008;15:140-150.
  • Zhao L, Wang L, Ji W, Wang X, Zhu X, Hayman JA, Kalemkerian GP, Yang W, Brenner D, Lawrence TS, Kong FM. Elevation of plasma TGFbeta1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys 2009:74:1385-1390.
  • Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y, Lan J, Liu S, Sun L, Jia L, Mo X, Li J. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther 2013;21:456-465.
  • Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33:99-109.
  • Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 1997;29:79-89.
  • Grande JP. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 1997:214:27-40.
  • Anscher MS, Murase T, Prescott DM, Marks LB, Reisenbichler H, Bentel GC, Spencer D, Sherouse G, Jirtle RL. Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994;30:671-676.
  • Beck LS, DeGuzman L, Lee WP, Xu Y, Siegel MW, Amento EP. One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest 1993;92:2841-2849.
  • McDonald S, Rubin P, Constine L. Biochemical markers as predictors for pulmonary effects of radiation. Rad Oncol Invest 1995;3:56-63.
  • Anscher MS, Thrasher B, Rabbani Z, Teicher B, Vujaskovic Z: Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys, 65: 876-881, 2006.
  • Gopal R, Tucker SL, Komaki R, Liao Z, Forster KM, Stevens C, Kelly JF, Starkschall G. The relationship between local dose and loss of function for irradiated lung. Int J Radiat Oncol Biol Phys 2003;56:106-113.
  • Liao ZX, Travis EL, Tucker SL. Damage and morbidity from pneumonitis after irradiation of partial volumes of mouse lung. Int J Radiat Oncol Biol Phys 1995;32:1359-1370.
  • Tucker SL, Liao ZX, Travis EL. Estimation of the spatial distribution of target cells for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 1997;38:1055-1066.
  • Travis EL, Liao ZX, Tucker SL. Spatial heterogeneity of the volume effect for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 1997;38:1045-1054,.
  • Yamada M, Kudoh S, Hirata K, Nakajima T, Yoshikawa J. Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer 1998;34:71-75.
  • Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, Burman CM, Leibel SA, Ling CC. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small cell lung cancerpatients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002;54:329-339.
  • Hopa AJ, Lindsay PE, El Naqa I, Alaly JR, Vicic M, Bradley JD, Deasy JO. Modeling radiation pneumonitis risk with clinical, dosimetric and spatial parameters. Int J Radiat Oncol Biol Phys 2006;65:112-124.
  • Choi N, Kanarek D, Kazemi H. Physiologic changes in pulmonary function after thoracic radiotherapy for patients with lung cancer and role of regional pulmonary function studies in predicting postradiotherapy pulmonary function before radiotherapy. Cancer Treat Symp 1985;2:119-130.
  • Brady LW, Germon PA, Cander L. The effects of radiation therapy on pulmonary function in carcinoma of the lung. Radiology 1965;85:130-134.
  • Cox JD, Komaki R, Byhardt RW. Is immediate chest radiotherapy obligatory for any or all patients with limited-stage non– small cell carcinoma of the lung? Yes. Cancer Treat Rep 1983;67:327-331.
  • Cox JD. Fractionation: a paradigm for clinical research in radiation oncology. Int J Radiat Oncol Biol Phys 1987;13:1271-1281.
  • Cox JD, Azarnia N, Byhardt RW, Shin KH, Emami B, Pajak TF. A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non–small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 1999;8:1543-1555.
  • Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA. Clinical dose volume histogram analaysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Physic 1999;45:323-329.
  • Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Radiation- induced pulmonart toxicity. A dose-volume histogram analysis in patients in 201 patients with lung caner. Int J Radiat Oncol Biol Phys 2001;51:650-659.
  • Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, Mohan R, Cox JD, Komaki R. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006;66:1399-1407.
  • Bradley JD, Hope A, El Naqa I, Apte A, Lindsay PE, Bosch W, Matthews J, Sause W, Graham MV. A nomogram to predict radiation pneumonitis derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys 2007;69:985-992.
  • Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI. İncidence of radiation pneumonitis after thoracic irradiation. Dose –volume corraletes. Int J Radiat Oncol Biol Phys 2007;67:410-416.
  • Armstrong J, Raben A, Zelefsky M, Burt M, Leibel S, Burman C, Kutcher G, Harrison L, Hahn C, Ginsberg R, Rusch V, Kris M, Fuks Z. Promising survival with three- dimensional conformal radiation therapy for non-small cell lung cancer. Radiother Oncol 1997;44:12-22.
  • Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, Kado T, Takada Y. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 2003;55:110-115.
  • Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, Turrisi A, Lichter A, Fraass B, Eisbruch A, Lawrence TS, Ten Haken RK. Final toxicity results of a radiation –dose escalation study in patients with non-small cell lung cancer (NSCLC). Predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006;65:1075-1086.
  • Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B. Toxicity and outcome results of RTOG 9311: A phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small cell lung cancinoma. Int J Radiat Oncol Biol Phys 2005;61:318-328.
  • Hayman JA, Martel MK, Ten Haken RK, Normolle DP, Todd RF 3rd, Littles JF, Sullivan MA, Possert PW, Turrisi AT, Lichter AS. Dose escalation in non-small cell lung cancer using three- dimensional conformal radiation therapy. Update of a phase I trial. J. Clin Oncol 2001;19:127-136.
  • Narayan S, Henning Gt, Ten Haken RK, Sullivan MA, Martel MK, Hayman JA. Results following treatment to doses of 92.4 or 102.9 Gy on a phase Idoseescalation study for non-small cell lung cancer. Lung Cancer 2004;44:79-88.
  • Rosenzweig KE, Mychalezak B, Fuks Z, Hanley J, Burman C, Ling CC, Armstrong J, Ginsberg R, Kris MG, Raben A, Leibel S. Final Report of the 70.2- Gy and 75.6-Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 2000;6:82-87.
  • Ten Haken RK, Martel MK, Kessler ML, Hazuka MB, Lawrence TS, Robertson JM, Turrisi AT, Lichter AS. Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 1993;27:689-695.
  • Seppenwoolde Y, Lebesque JV, De Jaeger K, Belderbos JS, Boersma LJ, Schilstra C, Henning GT, Hayman JA, Martel MK, Ten Haken RK. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol Phys 2003;55:724-735.
There are 49 citations in total.

Details

Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Melek Akçay

Alaattin Özen

Sema Uslu This is me

Hüseyin Yıldırım This is me

Evrim Metcalfe

Durmuş Etiz

Publication Date October 12, 2017
Published in Issue Year 2017 Volume: 39 Issue: 3

Cite

Vancouver Akçay M, Özen A, Uslu S, Yıldırım H, Metcalfe E, Etiz D. Radyoterapi Uygulanan Akciğer Kanseri Tanılı Vakalarda Radyasyon Pnömonisi Gelişimini Etkileyen Faktörler. Osmangazi Tıp Dergisi. 2017;39(3):35-43.


13299        13308       13306       13305    13307  1330126978