Research Article
BibTex RIS Cite

Comparıson of Flow Cytometry Results of Acute Myeloid Leukemia Patients at Diagnosis and Relapse

Year 2020, Volume: 42 Issue: 4, 404 - 411, 13.07.2020
https://doi.org/10.20515/otd.556591

Abstract

In most patients with acute
myeloid leukemia (AML), leukemic cells become undetectable after chemotherapy.
Nevertheless, leukemia may subsequently relapse due to minimal residual disease
(MRD). Flow cytometric monitoring of MRD is prognostically informative. However
immunophenotypic shifts at relapse is possible and may limit flow cytometric
MRD-testing. Our objective was to evaluate the antigen changes in our AML
patients. Patients diagnosed between September 2002 and November 2016 were
analyzed retrospectively. Bone marrow samples were collected at diagnosis and
relapse from 40 patients with de novo (n=34) or secondary (n=6) AML, aged 19 to
77 years. Bone marrow samples were collected into tubes containing K3EDTA.
Phycoerhtyrine (PE) and fluorescein isothiocyanate (FITC) (eBioscience and BD
Bioscience, San Jose, California) surface antigens were used according to the
routine panel used in our laboratory. Analyses were done according to CD45 SSC
gating strategy by Becton Dickinson FACSCalibur device. Overall, 34 of 40 (85%)
cases showed changes (gain and/or loss of antigen) of at least one marker
(n=10). Antigen changes were observed in 2 (n=7), 3 (n=6), 4 (n=6), 5 (n=4) or
6 (n=1) antigens in other patients. Antigen changes were found in 16 of 18
antigens (88.9%) totally. CD20 and CD45 were the only antigens with no change.
Patients with AML demonstrate a high frequency of immunophenotypic shift at
relapse. Antigen changes at relapse should be kept in mind in the minimal
residual disease era.

References

  • 1. Coustan-Smith E, Campana D. Should evaluation for minimal residual disease be routine in acute myeloid leukemia? Curr Opin Hematol. 2013;20(2):86–92.
  • 2. Kayser S, Walter RB, Stock W, Schlenk RF. Minimal residual disease in acute myeloid leukemia--current status and future perspectives. Curr Hematol Malig Rep. 2015;10(2):132–44.
  • 3. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, Mielcarek M, Estey EH, Appelbaum FR, Walter RB. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34(4):329–36.
  • 4. Grimwade D, Vyas P, Freeman S. Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol.2010;22(6):656–63.
  • 5. Krönke J,  Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI, Paschka P, Onken S, Eiwen K, Habdank M, Späth D, Lübbert M, Wattad M, Kindler T, Salih HR, Held G, Nachbaur D, von Lilienfeld-Toal M, Germing U, Haase D, Mergenthaler HG, Krauter J, Ganser A, Göhring G, Schlegelberger B, Döhner H, Döhner K. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16.
  • 6. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY, Raimondi SC, Onciu M, Jacobsen J, Ribeiro RC, Dahl GV, Bowman WP, Taub JW, Degar B, Leung W, Downing JR, Pui CH, Rubnitz JE, Campana D. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30(29):3625–32.
  • 7. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F, Arcese W, Amadori S, Venditti A. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41.
  • 8. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T, Maertens J, Boeckx N, de Greef GE, Valk PJ, Preijers FW, Huijgens PC, Dräger AM, Schanz U, Jongen-Lavrecic M, Biemond BJ, Passweg JR, van Gelder M, Wijermans P, Graux C, Bargetzi M, Legdeur MC, Kuball J, de Weerdt O, Chalandon Y, Hess U, Verdonck LF, Gratama JW, Oussoren YJ, Scholten WJ, Slomp J, Snel AN, Vekemans MC, Löwenberg B, Ossenkoppele GJ, Schuurhuis GJ. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97.
  • 9. Walter RB, Buckley SA, Pagel JM, Wood BL, Storer BE, Sandmaier BM, Fang M, Gyurkocza B, Delaney C, Radich JP, Estey EH, Appelbaum FR. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.
  • 10. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, Patel Y, Bhudia N, Farah H, Mason J, Wall K, Akiki S, Griffiths M, Solomon E, McCaughan F, Linch DC, Gale RE, Vyas P, Freeman SD, Russell N, Burnett AK, Grimwade D; UK National Cancer Research Institute AML Working Group. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33.
  • 11. Taub JW, Berman JN, Hitzler JK, Sorrell AD, Lacayo NJ, Mast K, Head D, Raimondi S, Hirsch B, Ge Y, Gerbing RB, Wang YC, Alonzo TA, Campana D, Coustan-Smith E, Mathew P, Gamis AS. Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children’s Oncology Group AAML0431 trial. Blood. 2017;129(25):3304–13.
  • 12. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90.
  • 13. Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, Putti MC, Rizzari C, Santoro N, Zecca M, Disarò S, Rondelli R, Merli P, Pigazzi M, Pession A, Locatelli F, Basso G. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol. 2017;177(1):116–26.
  • 14. San Miguel JF, Vidriales MB, López-Berges C, Díaz-Mediavilla J, Gutiérrez N, Cañizo C, Ramos F, Calmuntia MJ, Pérez JJ, González M, Orfao A. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98(6):1746–51.
  • 15. Coustan-Smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, Andreansky M, Behm FG, Raimondi SC, Shurtleff SA, Downing JR, Campana D. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003;123(2):243–52.
  • 16. MRD-AML-BFM Study Group, Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F, Zimmermann M, Reinhardt D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol. 2006;24(22):3686–92.
  • 17. Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P, Ammatuna E, Neri B, Ottaviani L, Sarlo C, Venditti D, Quaresima M, Cerretti R, Rizzo M, de Fabritiis P, Lo Coco F, Arcese W, Amadori S, Venditti A. Toward optimization of post remission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008;26(30):4944–51.
  • 18. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, Pounds S, Razzouk BI, Lacayo NJ, Cao X, Meshinchi S, Degar B, Airewele G, Raimondi SC, Onciu M, Coustan-Smith E, Downing JR, Leung W, Pui CH, Campana D. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.
  • 19. van der Velden VH,  van der Sluijs-Geling A, Gibson BE, te Marvelde JG, Hoogeveen PG, Hop WC, Wheatley K, Bierings MB, Schuurhuis GJ, de Graaf SS, van Wering ER, van Dongen JJ. Clinical significance of flow cytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia. 2010;24(9):1599–1606.
  • 20. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, Estey EH, Salter AI, Lansverk E, Chien JW, Gopal AK, Appelbaum FR, Pagel JM. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29(9):1190–7.
  • 21. Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA, Ho PA, Franklin J, Cooper TM, Gamis AS, Meshinchi S. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120(8):1581–8.
  • 22. Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a‘ moving target’ for detection of residual disease. Cytometry B Clin Cytom. 2014; 86(1): 3–14.
  • 23. Quesenberry PJ, Goldberg LR, Dooner MS. Concise reviews: a stem cell apostasy:a tale of four H words. Stem Cells 2015; 33(1): 15–20.
  • 24. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van't Veer MB. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL).Leukemia.1995;9(10):1783-6.
  • 25. Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T, Kern W. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic and molecular genetic findings. Cytometry B Clin Cytom. 2004; 62(1): 25-38.
  • 26. Li X, Du W, Liu W, Li X, Li H, Huang SA. Comprehensive flow cytometry phenotype in acute leukemia at diagnosis and at relapse. APMIS. 2010;118(5):353–9.
  • 27. Feller N, Van Der Pol MA, Van Stijn A, Weijers GW, Westra AH, Evertse BW, Ossenkoppele GJ, Schuurhuis GJ. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia. 2004; 18(8):1380–90.
  • 28. Kern W, Voskova D, Schnittger S, Schoch C, Hiddemann W, Haferlach T. Four-fold staining including CD45 gating improves the sensitivity of multiparameter flow cytometric assessment of minimal residual disease in patients with acute myeloid leukemia. Hematol J. 2004; 5(5): 410–8.
  • 29. Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, Landolfi C, Orfão A. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol. 1996; 49(1): 15–8.
  • 30. Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, Schiffer CA, Powell BL, Kolitz JE, Moore JO, Stone RM, Davey FR, Carroll AJ, Larson RA, Bloomfield CD. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood. 2001;97(11):3574-80.
  • 31. Coustan-Smith E, Song G, Shurtleff S, Yeoh AE, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight. 2018;3(9). pii: 98561.
  • 32. Thomas X, Campos L, Archimbaud E, Shi ZH, Treille-Ritouet D, Anglaret B, Fiere D. Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol. 1992;81(1):40–4.
  • 33. Langebrake C, Brinkmann I, Teigler-Schlegel A,Creutzig U, Griesinger F, Puhlmann U, Reinhardt D. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1–9.
  • 34. Zheng J, Wang X, Hu Y, Yang J, Liu J, He Y, Gong Q, Yao J, Li X, Du W, Huang S. A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China. Cytometry B Clin Cytom. 2008;74(1):25–9.
  • 35. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.
  • 36. Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood. 2013; 122(6):1088–9.
  • 37. Keeney M, Halley JG, Rhoads DD, Ansari MQ, Kussick SJ, Karlon WJ, Mehta KU, Dorfman DM, Linden MA. Marked variability in reported minimal residual disease lower level of detection of 4 hematolymphoid neoplasms: a survey of participants in the College of American Pathologists flow cytometry proficiency testing program. Arch Pathol Lab Med. 2015; 139(10): 1276–80.
  • 38. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482-90.

Akut Miyeloid Lösemili Hastaların Tanı ve Relaps Dönemindeki Akım Sitometri Sonuçlarının Karşılaştırılması

Year 2020, Volume: 42 Issue: 4, 404 - 411, 13.07.2020
https://doi.org/10.20515/otd.556591

Abstract

Akut miyeloid lösemi (AML)li çoğu
hastada lösemik hücreler kemoterapi sonrası 
kaybolur. Ancak minimal kalıntı hastalık (MKH) nedeniyle lösemi nüksü
gözlenebilir. MKH’nin akım sitometrik olarak takibi prognostik açıdan bilgi
sağlar. Fakat relaps anında immünfenotipik kaymalar olabilir ve akım sitometri
ile MKH değerlendirilmesini kısıtlayabilir. Bu çalışmada AML hastalarındaki
antijen değişikliklerinin saptanması amaçlanmıştır. Çalışmada Eylül 2002 ve
Kasım 2016 arasında AML tanısı alan 19-77 yaş arası geriye dönük olarak
değerlendirildi. Kemik iliği örnekleri tanı ve relaps anında elde edildi.
Hastaların 34’ü de novo, 6’sı sekonder AML idi. Kemik iliği örnekleri K3EDTA
içeren tüplere alındı. Phycoerhtyrine (PE) ve fluorescein isothiocyanate (FITC)
(eBioscience and BD Bioscience, San Jose, California) yüzey antijenleri
laboratuvarımızda kullanılan rutin panele göre kullanıldı. Analizler CD45
kapılama stratejisine göre Becton Dickinson FACSCalibur cihazı ile yapıldı.
Kırk hastanın 34’ünde (%85) en az 1 antijende değişiklik (antijen kazanımı
ve/veya kaybı) mevcuttu (n=10). Antijen değişiklikleri 2 (n=7), 3 (n=6), 4
(n=6), 5 (n=4) ya da 6 (n=1) antijende gözlendi. Antijen değişiklikleri 18
antijenin 16’sında (%88.9) saptandı. Hiçbir hastada değişiklik gözlenmeyen
antijenler sadece CD20 ve CD45’ti. AML’li hastalarda relaps sırasında
immünfenotipik kayma sıklığı yüksektir. MKH değerlendirilirken relapsta gelişen
antigen değişiklikleri göz önünde bulundurulmalıdır.

References

  • 1. Coustan-Smith E, Campana D. Should evaluation for minimal residual disease be routine in acute myeloid leukemia? Curr Opin Hematol. 2013;20(2):86–92.
  • 2. Kayser S, Walter RB, Stock W, Schlenk RF. Minimal residual disease in acute myeloid leukemia--current status and future perspectives. Curr Hematol Malig Rep. 2015;10(2):132–44.
  • 3. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, Mielcarek M, Estey EH, Appelbaum FR, Walter RB. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34(4):329–36.
  • 4. Grimwade D, Vyas P, Freeman S. Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol.2010;22(6):656–63.
  • 5. Krönke J,  Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI, Paschka P, Onken S, Eiwen K, Habdank M, Späth D, Lübbert M, Wattad M, Kindler T, Salih HR, Held G, Nachbaur D, von Lilienfeld-Toal M, Germing U, Haase D, Mergenthaler HG, Krauter J, Ganser A, Göhring G, Schlegelberger B, Döhner H, Döhner K. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16.
  • 6. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY, Raimondi SC, Onciu M, Jacobsen J, Ribeiro RC, Dahl GV, Bowman WP, Taub JW, Degar B, Leung W, Downing JR, Pui CH, Rubnitz JE, Campana D. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30(29):3625–32.
  • 7. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F, Arcese W, Amadori S, Venditti A. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41.
  • 8. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T, Maertens J, Boeckx N, de Greef GE, Valk PJ, Preijers FW, Huijgens PC, Dräger AM, Schanz U, Jongen-Lavrecic M, Biemond BJ, Passweg JR, van Gelder M, Wijermans P, Graux C, Bargetzi M, Legdeur MC, Kuball J, de Weerdt O, Chalandon Y, Hess U, Verdonck LF, Gratama JW, Oussoren YJ, Scholten WJ, Slomp J, Snel AN, Vekemans MC, Löwenberg B, Ossenkoppele GJ, Schuurhuis GJ. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97.
  • 9. Walter RB, Buckley SA, Pagel JM, Wood BL, Storer BE, Sandmaier BM, Fang M, Gyurkocza B, Delaney C, Radich JP, Estey EH, Appelbaum FR. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.
  • 10. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, Patel Y, Bhudia N, Farah H, Mason J, Wall K, Akiki S, Griffiths M, Solomon E, McCaughan F, Linch DC, Gale RE, Vyas P, Freeman SD, Russell N, Burnett AK, Grimwade D; UK National Cancer Research Institute AML Working Group. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33.
  • 11. Taub JW, Berman JN, Hitzler JK, Sorrell AD, Lacayo NJ, Mast K, Head D, Raimondi S, Hirsch B, Ge Y, Gerbing RB, Wang YC, Alonzo TA, Campana D, Coustan-Smith E, Mathew P, Gamis AS. Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children’s Oncology Group AAML0431 trial. Blood. 2017;129(25):3304–13.
  • 12. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90.
  • 13. Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, Putti MC, Rizzari C, Santoro N, Zecca M, Disarò S, Rondelli R, Merli P, Pigazzi M, Pession A, Locatelli F, Basso G. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol. 2017;177(1):116–26.
  • 14. San Miguel JF, Vidriales MB, López-Berges C, Díaz-Mediavilla J, Gutiérrez N, Cañizo C, Ramos F, Calmuntia MJ, Pérez JJ, González M, Orfao A. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98(6):1746–51.
  • 15. Coustan-Smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, Andreansky M, Behm FG, Raimondi SC, Shurtleff SA, Downing JR, Campana D. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003;123(2):243–52.
  • 16. MRD-AML-BFM Study Group, Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F, Zimmermann M, Reinhardt D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol. 2006;24(22):3686–92.
  • 17. Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P, Ammatuna E, Neri B, Ottaviani L, Sarlo C, Venditti D, Quaresima M, Cerretti R, Rizzo M, de Fabritiis P, Lo Coco F, Arcese W, Amadori S, Venditti A. Toward optimization of post remission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008;26(30):4944–51.
  • 18. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, Pounds S, Razzouk BI, Lacayo NJ, Cao X, Meshinchi S, Degar B, Airewele G, Raimondi SC, Onciu M, Coustan-Smith E, Downing JR, Leung W, Pui CH, Campana D. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.
  • 19. van der Velden VH,  van der Sluijs-Geling A, Gibson BE, te Marvelde JG, Hoogeveen PG, Hop WC, Wheatley K, Bierings MB, Schuurhuis GJ, de Graaf SS, van Wering ER, van Dongen JJ. Clinical significance of flow cytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia. 2010;24(9):1599–1606.
  • 20. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, Estey EH, Salter AI, Lansverk E, Chien JW, Gopal AK, Appelbaum FR, Pagel JM. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29(9):1190–7.
  • 21. Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA, Ho PA, Franklin J, Cooper TM, Gamis AS, Meshinchi S. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120(8):1581–8.
  • 22. Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a‘ moving target’ for detection of residual disease. Cytometry B Clin Cytom. 2014; 86(1): 3–14.
  • 23. Quesenberry PJ, Goldberg LR, Dooner MS. Concise reviews: a stem cell apostasy:a tale of four H words. Stem Cells 2015; 33(1): 15–20.
  • 24. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van't Veer MB. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL).Leukemia.1995;9(10):1783-6.
  • 25. Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T, Kern W. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic and molecular genetic findings. Cytometry B Clin Cytom. 2004; 62(1): 25-38.
  • 26. Li X, Du W, Liu W, Li X, Li H, Huang SA. Comprehensive flow cytometry phenotype in acute leukemia at diagnosis and at relapse. APMIS. 2010;118(5):353–9.
  • 27. Feller N, Van Der Pol MA, Van Stijn A, Weijers GW, Westra AH, Evertse BW, Ossenkoppele GJ, Schuurhuis GJ. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia. 2004; 18(8):1380–90.
  • 28. Kern W, Voskova D, Schnittger S, Schoch C, Hiddemann W, Haferlach T. Four-fold staining including CD45 gating improves the sensitivity of multiparameter flow cytometric assessment of minimal residual disease in patients with acute myeloid leukemia. Hematol J. 2004; 5(5): 410–8.
  • 29. Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, Landolfi C, Orfão A. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol. 1996; 49(1): 15–8.
  • 30. Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, Schiffer CA, Powell BL, Kolitz JE, Moore JO, Stone RM, Davey FR, Carroll AJ, Larson RA, Bloomfield CD. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood. 2001;97(11):3574-80.
  • 31. Coustan-Smith E, Song G, Shurtleff S, Yeoh AE, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight. 2018;3(9). pii: 98561.
  • 32. Thomas X, Campos L, Archimbaud E, Shi ZH, Treille-Ritouet D, Anglaret B, Fiere D. Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol. 1992;81(1):40–4.
  • 33. Langebrake C, Brinkmann I, Teigler-Schlegel A,Creutzig U, Griesinger F, Puhlmann U, Reinhardt D. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1–9.
  • 34. Zheng J, Wang X, Hu Y, Yang J, Liu J, He Y, Gong Q, Yao J, Li X, Du W, Huang S. A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China. Cytometry B Clin Cytom. 2008;74(1):25–9.
  • 35. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.
  • 36. Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood. 2013; 122(6):1088–9.
  • 37. Keeney M, Halley JG, Rhoads DD, Ansari MQ, Kussick SJ, Karlon WJ, Mehta KU, Dorfman DM, Linden MA. Marked variability in reported minimal residual disease lower level of detection of 4 hematolymphoid neoplasms: a survey of participants in the College of American Pathologists flow cytometry proficiency testing program. Arch Pathol Lab Med. 2015; 139(10): 1276–80.
  • 38. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482-90.
There are 38 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Eren Gunduz 0000-0001-7455-2949

Hava Uskudar Teke 0000-0002-4434-4580

Neslihan Andic 0000-0003-0510-4733

Publication Date July 13, 2020
Published in Issue Year 2020 Volume: 42 Issue: 4

Cite

Vancouver Gunduz E, Uskudar Teke H, Andic N. Comparıson of Flow Cytometry Results of Acute Myeloid Leukemia Patients at Diagnosis and Relapse. Osmangazi Tıp Dergisi. 2020;42(4):404-11.


13299        13308       13306       13305    13307  1330126978