Research Article
BibTex RIS Cite

The importance of FISH Test Targeting EGFR, CCND1 and RREB1 Genes in Differentiating Malignant Melanomas from Melanocytic Nevus

Year 2021, Volume: 43 Issue: 5, 431 - 438, 13.09.2021
https://doi.org/10.20515/otd.886981

Abstract

Melanocytic nevus (MN) may on occasion be difficult to distinguish from malignant melanoma (MM) histopathologically. Fluorescent in situ hybridization (FISH) has been demonstrated to be of use for the diagnosis of melanocytic neoplasms of the skin. In this study, the effectiveness of the standart melanoma FISH test (4-way probe targeting RREB1, CCND1, MYB genes and centromere 6) and additionally probes, targetting EGFR, TP53, MDM2 and TP53 genes, in differentiating melanomas from melanocytic nevi were investigated. Standard FISH test was performed on 24 MM and 24 MN samples, but EGFR, TP53, MDM2 and TP53 gene copy numbers were investigated in 16 of 24 MM and 24 MN using FISH method. The incidence of FISH-detected positive genomic copy aberrations (4-way probe, and others) was determined as 83,3% in 24 MM cases, and 5,2% in 24 MN. Statistically significant differences were found between the MM and MN groups in terms of CCND1, RREB1, EGFR amplifications (p<0.001, p<0.05, p˂0.05), but there was no association between histopathological features and detected abnormalities (p>0,05). In additionally, all 5 acral lentiginous melanomas, could be analysed, had EGFR amplifications. In conclusion, CCND1, RREB1, and EGFR amplifications have diagnostic significance for MM. The FISH test is very effective in terms of its use as an adjunct to histopathological methods. But centromere controlled probes should be used to avoid false positive results.

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
  • 2. O'Neill CH, Scoggins CR. Melanoma. Journal of surgical oncology. 2019;120(5):873-81.
  • 3. Ferrara GV, C.D. Fluorescence in situ hybridization for melanoma diagnosis: A review and a reappraisal. Am J Dermatopathol. 2016;38(4):253-69.
  • 4. Karen S. McGinnis SRL, David E. Elder, DuPont Guerry, Lynn Schucter, Michaler Ming, Rosalie Elenitsas. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch Dermatol. 2002;138:617 - 21.
  • 5. North JP, Vetto JT, Murali R, White KP, White CR, Jr., Bastian BC. Assessment of copy number status of chromosomes 6 and 11 by FISH provides independent prognostic information in primary melanoma. Am J Surg Pathol. 2011;35(8):1146-50.
  • 6. Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113(6):1065-9.
  • 7. Yeh I, Jorgenson E, Shen L, Xu M, North JP, Shain AH, et al. Targeted Genomic Profiling of Acral Melanoma. Journal of the National Cancer Institute. 2019;111(10):1068-77.
  • 8. Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33(12):1783-8.
  • 9. Rand AJ, Flejter WL, Dowling CA, Brooke LM, Boland GM, Kroshinsky D, et al. Atypical ALK-positive Spitz tumors with 9p21 homozygous deletion: Report of two cases and review of the literature. J Cutan Pathol. 2018;45(2):136-40.
  • 10. Rakosy Z, Vizkeleti L, Ecsedi S, Voko Z, Begany A, Barok M, et al. EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer. 2007;121(8):1729-37.
  • 11. Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017;36(42):5771-92.
  • 12. Ferrara G, De Vanna AC. Fluorescence In Situ Hybridization for Melanoma Diagnosis: A Review and a Reappraisal. Am J Dermatopathol. 2016;38(4):253-69.
  • 13. Busam KJ, Fang Y, Jhanwar SC, Pulitzer MP, Marr B, Abramson DH. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37(2):196-203.
  • 14. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22(8):989-95.
  • 15. Newman MD, Mirzabeigi M, Gerami P. Chromosomal copy number changes supporting the classification of lentiginous junctional melanoma of the elderly as a subtype of melanoma. Mod Pathol. 2009;22(9):1258-62.
  • 16. Pouryazdanparast P, Haghighat Z, Beilfuss BA, Guitart J, Gerami P. Melanocytic nevi with an atypical epithelioid cell component: clinical, histopathologic, and fluorescence in situ hybridization findings. Am J Surg Pathol. 2011;35(9):1405-12.
  • 17. Gerami P, Beilfuss B, Haghighat Z, Fang Y, Jhanwar S, Busam KJ. Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi. J Cutan Pathol. 2011;38(4):329-34.
  • 18. Colombino M, Sini M, Lissia A, De Giorgi V, Stanganelli I, Ayala F, et al. Discrepant alterations in main candidate genes among multiple primary melanomas. J Transl Med. 2014;12:117.
  • 19. Pouryazdanparast P NM, Mafee M, Haghighat Z, Guitart J, Gerami P. Distinguishing epithelioid blue nevus from blue nevus like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33:1396 - 400.
  • 20. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015;135(2):508-15.
  • 21. Boone B, Jacobs K, Ferdinande L, Taildeman J, Lambert J, Peeters M, et al. EGFR in melanoma: clinical significance and potential therapeutic target. J Cutan Pathol. 2011;38(6):492-502.
  • 22. Sini MCD, V. Paliogiannis, P. Casula, M. Colombino, M. Manca, A. Botti, G. Ascierto, P.A. Lissia, A. Cossu, A. Palmieri, G. Genetic Alterations in main candidate genes during melanoma progression. oncotarget. 2018;9(9):8531-41.
  • 23. Koroknai V, Szasz I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, et al. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Experimental dermatology. 2019.
  • 24. Katunaric M, Jurisic D, Petkovic M, Grahovac M, Grahovac B, Zamolo G. EGFR and cyclin D1 in nodular melanoma: correlation with pathohistological parameters and overall survival. Melanoma Res. 2014;24(6):584-91.
  • 25. Zhou R, Shi C, Tao W, Li J, Wu J, Han Y, et al. Analysis of Mucosal Melanoma Whole-Genome Landscapes Reveals Clinically Relevant Genomic Aberrations. Clinical cancer research : an official journal of the American Association for Cancer Research. 2019;25(12):3548-60.
  • 26. Rakosy Z, Vizkeleti L, Ecsedi S, Begany A, Emri G, Adany R, et al. Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. Cancer Genet Cytogenet. 2008;182(2):116-21.
  • 27. Wang L, Rao M, Fang Y, Hameed M, Viale A, Busam K, et al. A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation. J Mol Diagn. 2013;15(5):581-91.
  • 28. Gerami P, Scolyer RA, Xu X, Elder DE, Abraham RM, Fullen D, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37(5):676-84.
  • 29. Glatz-Krieger K, Pache M, Tapia C, Fuchs A, Savic S, Glatz D, et al. Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization. Virchows Arch. 2006;449(3):328-33.
  • 30. Pedram Gerami AW, Mariam Mafee, Yuaquin Fang, Melissa P. Pulitzer, Klaus J. Busam. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783 - 8.
  • 31. Gammon B, Beilfuss B, Guitart J, Busam KJ, Gerami P. Fluorescence in situ hybridization for distinguishing cellular blue nevi from blue nevus-like melanoma. J Cutan Pathol. 2011;38(4):335-41.

Malign Melanomlar ile Melanositik Nevüs Ayrımında EGFR, CCND1 ve RREB1 Genlerini Hedef Alan FISH Testinin Yeri

Year 2021, Volume: 43 Issue: 5, 431 - 438, 13.09.2021
https://doi.org/10.20515/otd.886981

Abstract

Melanositik nevüs (MN) örneklerini histopatolojik olarak malign melanomdan (MM) ayırmak bazen zor olabillmektedir. Floresan in situ hibridizasyon (FISH)’in ciltteki melanositik neoplazmların teşhisinde kullanıldığı kanıtlanmıştır. Bu çalışmada standart melanom FISH testinin (RREB1, CCND1, MYB genlerini ve sentromer 6'yı hedefleyen 4 yollu prob) ve ayrıca EGFR, TP53, MDM2 ve TP53 genlerini hedefleyen probların melanomları melanositik nevüslerden ayırmadaki etkinliği araştırılmıştır. 24 MM ve 24 MN örneklerine standart FISH testi uygulandı. Ancak EGFR, TP53, MDM2 ve TP53 gen kopya sayıları FISH yöntemi kullanılarak 24 MN ve 16/24 MM örneklerinde incelendi. Floresan in situ hibridizasyon ile saptanan pozitif genomik kopya aberasyonlarının (4 yollu prob ve diğerleri) görülme sıklığı 24 MM vakasında %83,3 ve 24 MN'de %5,2 olarak belirlendi. Malign melanom ve MN grupları arasında CCND1, RREB1, EGFR amplifikasyonları açısından istatistiksel olarak anlamlı farklılıklar bulundu (p<0,001, p<0,05, p˂0,05), ancak histopatolojik özellikler ile saptanan anormallikler arasında ilişki saptanmadı (p>0,05). Ek olarak, 5 akral lentijinöz melanomun tümü analiz edilebildi ve hepsi EGFR amplifikasyonu açısından pozitifti. Sonuç olarak, CCND1, RREB1 ve EGFR amplifikasyonları MM için tanısal öneme sahip olduğu ve FISH testinin, histopatolojik yöntemlere ek olarak kullanılmasının etkili olabileceği sonucuna varılmıştır. Ancak, yanlış pozitif sonuçlardan kaçınmak için sentromer kontrollü problar kullanılması gerekliliği gözlenmiştir.

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
  • 2. O'Neill CH, Scoggins CR. Melanoma. Journal of surgical oncology. 2019;120(5):873-81.
  • 3. Ferrara GV, C.D. Fluorescence in situ hybridization for melanoma diagnosis: A review and a reappraisal. Am J Dermatopathol. 2016;38(4):253-69.
  • 4. Karen S. McGinnis SRL, David E. Elder, DuPont Guerry, Lynn Schucter, Michaler Ming, Rosalie Elenitsas. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch Dermatol. 2002;138:617 - 21.
  • 5. North JP, Vetto JT, Murali R, White KP, White CR, Jr., Bastian BC. Assessment of copy number status of chromosomes 6 and 11 by FISH provides independent prognostic information in primary melanoma. Am J Surg Pathol. 2011;35(8):1146-50.
  • 6. Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113(6):1065-9.
  • 7. Yeh I, Jorgenson E, Shen L, Xu M, North JP, Shain AH, et al. Targeted Genomic Profiling of Acral Melanoma. Journal of the National Cancer Institute. 2019;111(10):1068-77.
  • 8. Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33(12):1783-8.
  • 9. Rand AJ, Flejter WL, Dowling CA, Brooke LM, Boland GM, Kroshinsky D, et al. Atypical ALK-positive Spitz tumors with 9p21 homozygous deletion: Report of two cases and review of the literature. J Cutan Pathol. 2018;45(2):136-40.
  • 10. Rakosy Z, Vizkeleti L, Ecsedi S, Voko Z, Begany A, Barok M, et al. EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer. 2007;121(8):1729-37.
  • 11. Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017;36(42):5771-92.
  • 12. Ferrara G, De Vanna AC. Fluorescence In Situ Hybridization for Melanoma Diagnosis: A Review and a Reappraisal. Am J Dermatopathol. 2016;38(4):253-69.
  • 13. Busam KJ, Fang Y, Jhanwar SC, Pulitzer MP, Marr B, Abramson DH. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37(2):196-203.
  • 14. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22(8):989-95.
  • 15. Newman MD, Mirzabeigi M, Gerami P. Chromosomal copy number changes supporting the classification of lentiginous junctional melanoma of the elderly as a subtype of melanoma. Mod Pathol. 2009;22(9):1258-62.
  • 16. Pouryazdanparast P, Haghighat Z, Beilfuss BA, Guitart J, Gerami P. Melanocytic nevi with an atypical epithelioid cell component: clinical, histopathologic, and fluorescence in situ hybridization findings. Am J Surg Pathol. 2011;35(9):1405-12.
  • 17. Gerami P, Beilfuss B, Haghighat Z, Fang Y, Jhanwar S, Busam KJ. Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi. J Cutan Pathol. 2011;38(4):329-34.
  • 18. Colombino M, Sini M, Lissia A, De Giorgi V, Stanganelli I, Ayala F, et al. Discrepant alterations in main candidate genes among multiple primary melanomas. J Transl Med. 2014;12:117.
  • 19. Pouryazdanparast P NM, Mafee M, Haghighat Z, Guitart J, Gerami P. Distinguishing epithelioid blue nevus from blue nevus like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33:1396 - 400.
  • 20. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015;135(2):508-15.
  • 21. Boone B, Jacobs K, Ferdinande L, Taildeman J, Lambert J, Peeters M, et al. EGFR in melanoma: clinical significance and potential therapeutic target. J Cutan Pathol. 2011;38(6):492-502.
  • 22. Sini MCD, V. Paliogiannis, P. Casula, M. Colombino, M. Manca, A. Botti, G. Ascierto, P.A. Lissia, A. Cossu, A. Palmieri, G. Genetic Alterations in main candidate genes during melanoma progression. oncotarget. 2018;9(9):8531-41.
  • 23. Koroknai V, Szasz I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, et al. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Experimental dermatology. 2019.
  • 24. Katunaric M, Jurisic D, Petkovic M, Grahovac M, Grahovac B, Zamolo G. EGFR and cyclin D1 in nodular melanoma: correlation with pathohistological parameters and overall survival. Melanoma Res. 2014;24(6):584-91.
  • 25. Zhou R, Shi C, Tao W, Li J, Wu J, Han Y, et al. Analysis of Mucosal Melanoma Whole-Genome Landscapes Reveals Clinically Relevant Genomic Aberrations. Clinical cancer research : an official journal of the American Association for Cancer Research. 2019;25(12):3548-60.
  • 26. Rakosy Z, Vizkeleti L, Ecsedi S, Begany A, Emri G, Adany R, et al. Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. Cancer Genet Cytogenet. 2008;182(2):116-21.
  • 27. Wang L, Rao M, Fang Y, Hameed M, Viale A, Busam K, et al. A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation. J Mol Diagn. 2013;15(5):581-91.
  • 28. Gerami P, Scolyer RA, Xu X, Elder DE, Abraham RM, Fullen D, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37(5):676-84.
  • 29. Glatz-Krieger K, Pache M, Tapia C, Fuchs A, Savic S, Glatz D, et al. Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization. Virchows Arch. 2006;449(3):328-33.
  • 30. Pedram Gerami AW, Mariam Mafee, Yuaquin Fang, Melissa P. Pulitzer, Klaus J. Busam. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783 - 8.
  • 31. Gammon B, Beilfuss B, Guitart J, Busam KJ, Gerami P. Fluorescence in situ hybridization for distinguishing cellular blue nevi from blue nevus-like melanoma. J Cutan Pathol. 2011;38(4):335-41.
There are 31 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Sevgi Işık 0000-0003-0243-784X

Tolga Töre This is me 0000-0002-2165-4455

Funda Canaz 0000-0002-5642-3876

Hülya Özen 0000-0003-4144-3732

Ebru Erzurumluoğlu 0000-0002-1275-5174

Oğuz Çilingir 0000-0002-5593-4164

Sevilhan Artan 0000-0001-7658-6309

Beyhan Durak Aras 0000-0003-1881-1912

Publication Date September 13, 2021
Published in Issue Year 2021 Volume: 43 Issue: 5

Cite

Vancouver Işık S, Töre T, Canaz F, Özen H, Erzurumluoğlu E, Çilingir O, Artan S, Durak Aras B. The importance of FISH Test Targeting EGFR, CCND1 and RREB1 Genes in Differentiating Malignant Melanomas from Melanocytic Nevus. Osmangazi Tıp Dergisi. 2021;43(5):431-8.


13299        13308       13306       13305    13307  1330126978