Research Article
BibTex RIS Cite

Senil Kataraktlı Gözlerde Pupil Dilatasyonunun Oküler Biyometri Ölçümlerine Etkisi

Year 2023, Volume: 8 Issue: 1, 74 - 80, 05.03.2023
https://doi.org/10.26453/otjhs.1161706

Abstract

Amaç: Çalışmada, kataraktlı gözlerde sikloplejinin oküler biyometrik parametrelere ve Sanders-Retzlaff-Kraff/teorik (SRK/T) formülü ile hesaplanan göz içi lens (GİL) gücüne etkisini değerlendirmek amaçlanmıştır.
Materyal ve Metot: Bu kesitsel çalışmaya, katarakt cerrahisi planlanan 68 senil kataraktlı hastanın 68 gözü dahil edildi. Siklopleji öncesi ve sonrası AL-Scan (Nidek Co. Ltd, Gamagori, Japonya) ile ön kamara derinliği (ÖKD), aksiyel uzunluk (AU), beyazdan beyaza (BB) çap, keratometri (K1, K2, K ortalama), merkezi kornea kalınlığı (MKK) ve pupil çapı (PÇ) ölçüldü. Göz içi lensi gücü, hedef refraksiyon 0 olacak şekilde SRK/T formülüne göre hesaplandı. Siklopleji için %1’lik siklopentolat hidroklorür kullanıldı.
Bulgular: Hastaların yaş ortalaması 70,60±4,07 yıl (65-80) idi. Siklopleji sonrası ÖKD’de anlamlı bir artış izlendi (p< 0,001). Dilatasyon öncesi ve sonrası AU, BB, MKK, K1, K2, Kortalama ve GİL gücü değerleri arasında istatistiksel olarak anlamlı fark yoktu (p> 0,05). Siklopleji sonrası iki olguda GİL gücünde 0,5 D'nin üzerinde bir azalma gözlemlendi.
Sonuç: Senil kataraktlı gözlerde %1’lik siklopentolat hidroklorürün neden olduğu siklopleji SRK/T formülüyle hesaplanan ortalama GİL gücünü etkilememektedir.

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • 1. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85:472-485.
  • 2. Pereira A, Popovic M, Lloyd JC, El-Defrawy S, Schlenker MB. Preoperative measurements for cataract surgery: a comparison of ultrasound and optical biometric devices. Int Ophthalmol. 2021;41(4):1521-1530.
  • 3. Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg. 2011;37(3):513-517.
  • 4. Vasavada SA, Patel P, Vaishnav VR, et al. Comparison of Optical Low-Coherence Reflectometry and Swept-Source OCT-Based Biometry Devices in Dense Cataracts. J Refract Surg. 2020;36(8):557-564.
  • 5. Contreras-Salinas H, Orozco-Ceja V, Romero-López MS, Barajas-Virgen MY, Baiza-Durán LM, Rodríguez-Herrera LY. Ocular Cyclopentolate: A Mini Review Concerning Its Benefits and Risks. Clin Ophthalmol. 2022;16:3753-3762.
  • 6. Özyol P, Özyol E, Baldemir E. Changes in Ocular Parameters and Intraocular Lens Powers in Aging Cycloplegic Eyes. Am J Ophthalmol. 2017;173:76-83.
  • 7. Momeni-Moghaddam H, Maddah N, Wolffsohn JS, et al. The Effect of Cycloplegia on the Ocular Biometric and Anterior Segment Parameters: A Cross-Sectional Study. Ophthalmol Ther. 2019;8(3):387-395.
  • 8. Hashemi H, Asharlous A, Khabazkhoob M, et al. The Effect of Cyclopentolate on Ocular Biometric Components. Optom Vis Sci. 2020;97(6):440-447.
  • 9. Ozcaliskan S, Yenerel NM. The effect of cycloplegia on biometric measurements using swept-source optical coherence tomography-based biometry. Clin Exp Optom. 2019;102(5):501-505.
  • 10. Tuncer I, Zengin MÖ, Yıldız S. The effect of cycloplegia on the ocular biometry and intraocular lens power based on age. Eye (Lond). 2021;35(2):676-681.
  • 11. Autrata D, Chrapek O, Drahorád S. Effect of pharmacological pupil dilation on intraocular lens power calculation in patients indicated for cataract surgery. Cesk Slov Oftalmol. 2021;77(4):192-200.
  • 12. Zeng Y, Gao JH. Effects of Mydrin eye-drops on central corneal thickness values in adult patients with myopia. Clin Exp Optom. 2017;100(2):151-154.
  • 13. Palamar M, Egrilmez S, Uretmen O, Yagci A, Kose S. Influences of cyclopentolate hydrochloride on anterior segment parameters with Pentacam in children. Acta Ophthalmol. 2011;89(5):461-465.
  • 14. Can E, Duran M, Çetinkaya T, Arıtürk N. The effect of pupil dilation on AL-Scan biometric parameters. Int Ophthalmol. 2016;36(2):179-183.
  • 15. Huang J, McAlinden C, Su B, et al. The effect of cycloplegia on the lenstar and the IOLMaster biometry. Optom Vis Sci. 2012;89(12):1691-1696.
  • 16. Cheng HC, Hsieh YT. Short-term refractive change and ocular parameter changes after cycloplegia. Optom Vis Sci. 2014;91(9):1113-1117.
  • 17. Yuvacı İ, Pangal E, Yuvacı S, et al. An Evaluation of Effects of Different Mydriatics on Choroidal Thickness by Examining Anterior Chamber Parameters: The Scheimpflug Imaging and Enhanced Depth Imaging-OCT Study. J Ophthalmol. 2015;2015:981274. doi: 10.1155/2015/981274.
  • 18. Ye L, Li S, Shi Y, et al. Comparisons of atropine versus cyclopentolate cycloplegia in myopic children. Clin Exp Optom. 2021;104(2):143-150.
  • 19. Mohamed A, Nandyala S, Ho A, Manns F, Parel JA, Augusteyn RC. Relationship of the cornea and globe dimensions to the changes in adult human crystalline lens diameter, thickness and power with age. Exp Eye Res. 2021;209:108653. doi: 10.1016/j.exer.2021.108653.
  • 20. Bakbak B, Koktekir BE, Gedik S, Guzel H. The effect of pupil dilation on biometric parameters of the Lenstar 900. Cornea. 2013;32(4):21-24.
  • 21. Raina UK, Gupta SK, Gupta A, Goray A, Saini V. Effect of Cycloplegia on Optical Biometry in Pediatric Eyes. J Pediatr Ophthalmol Strabismus. 2018;55(4):260-265.
  • 22. Teshigawara T, Meguro A, Mizuki N. Influence of pupil dilation on the Barrett Universal II (new generation), Haigis (4th generation), and SRK/T (3rd generation) intraocular lens calculation formulas: a retrospective study. BMC Ophthalmol. 2020;20(1):299.
  • 23. Sheppard AL, Davies LN. The effect of aging on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci. 2011;52(3):1809-1816.
  • 24. Rodriguez-Raton A, Jimenez-Alvarez M, Arteche-Limousin L, Mediavilla-Peña E, Larrucea-Martinez I. Effect of pupil dilation on biometry measurements with partial coherence interferometry and its effect on IOL power formula calculation. Eur J Ophthalmol. 2015;25(4):309-314.
  • 25. Simon NC, Farooq AV, Zhang MH, Riaz KM. The Effect of Pharmacological Dilation on Calculation of Targeted and Ideal IOL Power Using Multivariable Formulas. Ophthalmol Ther. 2020;9(3):1-11.
  • 26. Teshigawara T, Meguro A, Mizuki N. Influence of pupil dilation on predicted postoperative refraction and recommended IOL to obtain target postoperative refraction calculated using third- and fourth-generation calculation formulas. Clin Ophthalmol. 2018;12:1913-1919.
  • 27. Kuthirummal N, Vanathi M, Mukhija R, et al. Evaluation of Barrett Universal II formula for intraocular lens power calculation in Asian Indian population. Indian J Ophthalmol. 2020;68(1):59-64.
  • 28. Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018;125(2):169-178.

The Effect of Pupil Dilation on Ocular Biometry Measurements in the Senile Cataractous Eyes

Year 2023, Volume: 8 Issue: 1, 74 - 80, 05.03.2023
https://doi.org/10.26453/otjhs.1161706

Abstract

Objective: The study aimed to evaluate the effect of cycloplegia on the ocular biometric parameters and intraocular lens (IOL) power calculated by Sanders–Retzlaff–Kraff/Theoretical (SRK/T) formula in the cataractous eyes.
Materials and Methods: This cross-sectional study included 68 senile cataractous eyes of 68 patients scheduled to undergo cataract surgery. Measurements of anterior chamber depth (ACD), axial length (AL), white-to-white (WtW) diameter, keratometry (K1, K2, Kmean), central corneal thickness (CCT), and pupil size (PS) were obtained with AL-Scan (Nidek Co., Ltd, Gamagori, Japan) before and after cycloplegia. The SRK/T formula was used to calculate IOL power with target refraction of 0 D. Cycloplegia induced by cyclopentolate hydrochloride %1.
Results: The mean age of the patients was 70.60±4.07 years (range 65 to 80). A significant increase was observed in ACD after cycloplegia (p< 0.001). There was no statistically significant difference between pre-dilation and post-dilation AL, WtW, CCT, K1, K2, Kmean, and IOL power readings (p> 0.05). Two cases observed a decrease above 0.5 D of IOL power after cycloplegia.
Conclusions: Cycloplegia induced by cyclopentolate hydrochloride %1 does not affect the measurement of the AL, WtW, CCT, keratometry, and SRK/T calculated IOL power except ACD in senile cataractous eyes.

Project Number

yok

References

  • 1. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85:472-485.
  • 2. Pereira A, Popovic M, Lloyd JC, El-Defrawy S, Schlenker MB. Preoperative measurements for cataract surgery: a comparison of ultrasound and optical biometric devices. Int Ophthalmol. 2021;41(4):1521-1530.
  • 3. Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg. 2011;37(3):513-517.
  • 4. Vasavada SA, Patel P, Vaishnav VR, et al. Comparison of Optical Low-Coherence Reflectometry and Swept-Source OCT-Based Biometry Devices in Dense Cataracts. J Refract Surg. 2020;36(8):557-564.
  • 5. Contreras-Salinas H, Orozco-Ceja V, Romero-López MS, Barajas-Virgen MY, Baiza-Durán LM, Rodríguez-Herrera LY. Ocular Cyclopentolate: A Mini Review Concerning Its Benefits and Risks. Clin Ophthalmol. 2022;16:3753-3762.
  • 6. Özyol P, Özyol E, Baldemir E. Changes in Ocular Parameters and Intraocular Lens Powers in Aging Cycloplegic Eyes. Am J Ophthalmol. 2017;173:76-83.
  • 7. Momeni-Moghaddam H, Maddah N, Wolffsohn JS, et al. The Effect of Cycloplegia on the Ocular Biometric and Anterior Segment Parameters: A Cross-Sectional Study. Ophthalmol Ther. 2019;8(3):387-395.
  • 8. Hashemi H, Asharlous A, Khabazkhoob M, et al. The Effect of Cyclopentolate on Ocular Biometric Components. Optom Vis Sci. 2020;97(6):440-447.
  • 9. Ozcaliskan S, Yenerel NM. The effect of cycloplegia on biometric measurements using swept-source optical coherence tomography-based biometry. Clin Exp Optom. 2019;102(5):501-505.
  • 10. Tuncer I, Zengin MÖ, Yıldız S. The effect of cycloplegia on the ocular biometry and intraocular lens power based on age. Eye (Lond). 2021;35(2):676-681.
  • 11. Autrata D, Chrapek O, Drahorád S. Effect of pharmacological pupil dilation on intraocular lens power calculation in patients indicated for cataract surgery. Cesk Slov Oftalmol. 2021;77(4):192-200.
  • 12. Zeng Y, Gao JH. Effects of Mydrin eye-drops on central corneal thickness values in adult patients with myopia. Clin Exp Optom. 2017;100(2):151-154.
  • 13. Palamar M, Egrilmez S, Uretmen O, Yagci A, Kose S. Influences of cyclopentolate hydrochloride on anterior segment parameters with Pentacam in children. Acta Ophthalmol. 2011;89(5):461-465.
  • 14. Can E, Duran M, Çetinkaya T, Arıtürk N. The effect of pupil dilation on AL-Scan biometric parameters. Int Ophthalmol. 2016;36(2):179-183.
  • 15. Huang J, McAlinden C, Su B, et al. The effect of cycloplegia on the lenstar and the IOLMaster biometry. Optom Vis Sci. 2012;89(12):1691-1696.
  • 16. Cheng HC, Hsieh YT. Short-term refractive change and ocular parameter changes after cycloplegia. Optom Vis Sci. 2014;91(9):1113-1117.
  • 17. Yuvacı İ, Pangal E, Yuvacı S, et al. An Evaluation of Effects of Different Mydriatics on Choroidal Thickness by Examining Anterior Chamber Parameters: The Scheimpflug Imaging and Enhanced Depth Imaging-OCT Study. J Ophthalmol. 2015;2015:981274. doi: 10.1155/2015/981274.
  • 18. Ye L, Li S, Shi Y, et al. Comparisons of atropine versus cyclopentolate cycloplegia in myopic children. Clin Exp Optom. 2021;104(2):143-150.
  • 19. Mohamed A, Nandyala S, Ho A, Manns F, Parel JA, Augusteyn RC. Relationship of the cornea and globe dimensions to the changes in adult human crystalline lens diameter, thickness and power with age. Exp Eye Res. 2021;209:108653. doi: 10.1016/j.exer.2021.108653.
  • 20. Bakbak B, Koktekir BE, Gedik S, Guzel H. The effect of pupil dilation on biometric parameters of the Lenstar 900. Cornea. 2013;32(4):21-24.
  • 21. Raina UK, Gupta SK, Gupta A, Goray A, Saini V. Effect of Cycloplegia on Optical Biometry in Pediatric Eyes. J Pediatr Ophthalmol Strabismus. 2018;55(4):260-265.
  • 22. Teshigawara T, Meguro A, Mizuki N. Influence of pupil dilation on the Barrett Universal II (new generation), Haigis (4th generation), and SRK/T (3rd generation) intraocular lens calculation formulas: a retrospective study. BMC Ophthalmol. 2020;20(1):299.
  • 23. Sheppard AL, Davies LN. The effect of aging on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci. 2011;52(3):1809-1816.
  • 24. Rodriguez-Raton A, Jimenez-Alvarez M, Arteche-Limousin L, Mediavilla-Peña E, Larrucea-Martinez I. Effect of pupil dilation on biometry measurements with partial coherence interferometry and its effect on IOL power formula calculation. Eur J Ophthalmol. 2015;25(4):309-314.
  • 25. Simon NC, Farooq AV, Zhang MH, Riaz KM. The Effect of Pharmacological Dilation on Calculation of Targeted and Ideal IOL Power Using Multivariable Formulas. Ophthalmol Ther. 2020;9(3):1-11.
  • 26. Teshigawara T, Meguro A, Mizuki N. Influence of pupil dilation on predicted postoperative refraction and recommended IOL to obtain target postoperative refraction calculated using third- and fourth-generation calculation formulas. Clin Ophthalmol. 2018;12:1913-1919.
  • 27. Kuthirummal N, Vanathi M, Mukhija R, et al. Evaluation of Barrett Universal II formula for intraocular lens power calculation in Asian Indian population. Indian J Ophthalmol. 2020;68(1):59-64.
  • 28. Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018;125(2):169-178.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research article
Authors

Mehmet Barış Üçer 0000-0002-6807-4909

Erdinç Bozkurt 0000-0002-5570-799X

Hülya Gökmen 0000-0002-1907-7548

Project Number yok
Early Pub Date March 2, 2023
Publication Date March 5, 2023
Submission Date August 14, 2022
Acceptance Date February 6, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

AMA Üçer MB, Bozkurt E, Gökmen H. The Effect of Pupil Dilation on Ocular Biometry Measurements in the Senile Cataractous Eyes. OTJHS. March 2023;8(1):74-80. doi:10.26453/otjhs.1161706

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".