Performance Analysis of Cylindrical Shielding in Underground Cables
Year 2015,
Volume: 21 Issue: 2, 41 - 46, 29.04.2015
Selim Köroğlu
,
Nurettin Umurkan
,
Selami Kesler
Abstract
The shielding efficiency of cylindrical shields for three phase underground cable is investigated for several shields material using finite element method (FEM). This FEM model takes into account the nonlinear hysteretic behavior for ferromagnetic material in the shield. The shields are cylindrical shaped and the power cables are positioned in flat configuration. The shielding efficiency is compared for shields with the same geometry but several shielding materials with nonlinear hysteretic behavior (Magnetil and DX52, both from Arcelor-Mittal firm) and a non-ferromagnetic and electrically conducting shielding material (Aluminium). The paper investigates the influence of several parameters on shielding efficiency: the size of the shield radius, the current amplitude in the cable and the thickness of the shield. Magnetil shield material is the best in terms of shielding performance.
The numerical models are validated with experimental results for without shield.
References
- ICNIRP, “Guidelines for Limiting Exposure to Time Varying Electric Magnetic and Electromagnetic Fields (upto 300 GHz)”. Health Physics, 74(4), 494-522, 1998.
- Sevgi L. “Çevremizdeki Elektrik ve Manyetik Alanlar”. Endüstriyel & Otomasyon, 2005.
- Levy S. “Electromagnetic Shielding Effect of an Infinite Plane Conducting Sheet Placed between Circular Coaxial Cables”. Proceedings of the Institute of Radio Engineers, 21, 923-941, 1936.
- Schelkunoff SA. Electromagnetic Waves, 1st Ed. New York. USA, D. Van Nostrand Company, 1943.
- Schultz RB, Plantz VC, Brush DR. “Shielding Theory and Practice”. Compatibility, 30(3), 187-201, 1988.
- Hasselgren L, Luomi J. “Geometrical Aspects of Magnetic Extremely Shielding IEEE Transactions on Electromagnetic Compatibility, 37(3), 409-420, 1995. Low Frequencies”.
- Tekin I, Newman EH. “Moment Method Analysis of the Magnetic Shielding Factor of a Conducting TM Shield at ELF”. IEEE Transactions on Electromagnetic Compatibility, 38(4), 585-590, 1996.
- Olsen RG, Istenic M, Zunko P. “On Simple Methods for Calculating ELF Shielding of Infinite Planar Shields”. IEEE Transactions on Electromagnetic Compatibility, 45(3), 538-547, 2003.
- Istenic M, Olsen RG. “A Simple Hybrid Method for ELF Shielding IEEE Transactions on Electromagnetic Compatibility, 46(2), 199-207, 2004. Finite Planar Shields”. Enclosures Analyzing Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17(3),117-122, 2011. with Apertures”.
- Koroglu S, Sergeant P, Umurkan N. “Comparison of Analytical, Finite Element and Neural Network Methods to Study Magnetic Shielding”. Simulation Modeling Practice and Theory, 18(2), 206-216, 2010.
- Du Y, Burnett J. “Magnetic Shielding Principles of Linear Cylindrical IEEE 1996 International Symposium on Electromagnetic Compatibility, 19-23 August 1996. at
- Power-Frequency”. Santa Clara, California, USA,
- Pino-Lopez JC, Cruz-Romero P, Serrano-Iribarnegaray L, “Impact Two-Component Magnetic Shields on the Ampacity of Underground Power Cables”. Progress in Electromagnetics Research, 135, 601-625, 2013. Losses in Closed
- Sergeant P, Koroglu S. “Electromagnetic Losses in Magnetic Shields for Buried High Voltage Cables”. Progress 115, 441-460, 2011. Research-PIER,
- Köroğlu S. Elektrik Güç Sistemlerinde Manyetik Alan Ekranlanmasının Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2010. Doktora Tezi,
Yeraltı Kablolarında Silindirik Ekranlamanın Performans Analizi
Year 2015,
Volume: 21 Issue: 2, 41 - 46, 29.04.2015
Selim Köroğlu
,
Nurettin Umurkan
,
Selami Kesler
Abstract
Üç fazlı yeraltı kabloları için silindirik ekranlama etkinliği, sonlu elemanlar yöntemi (SEY) kullanarak çeşitli ekran malzemeleri için incelenmiştir. Bu SEY modeli ferromanyetik ekran malzemelerinin doğrusal olmayan histerezis davranışlarını da dikkate almaktadır. Kullanılan ekranlar silindir yapılı ve ekran içerisinde kabloların yerleştirilmesi ise düz şekildedir. Aynı ekran geometrisinde farklı ekran malzemelerinin ekranlama etkinliği karşılaştırılmıştır. Burada kullanılan ekran malzemelerinden ikisi ferromanyetik özellikli lineer olmayan histerezis davranışlarını sahip (Arceler-Mittal tarafından üretilen Magnetil ve DX52) ekranlardır. Diğeri ise ferromanyetik olmayan yüksek iletkenlikli ekran (Alüminyum) malzemesidir. Bu çalışmada; ekran yarıçapı, kablolardan geçen akımın genliği ve ekran kalınlığı gibi parametrelerin ekranlama etkinliği üzerindeki etkisi analiz edilmiştir. Ekranlama etkinliği açısından en iyi ekran malzemesinin Magnetil olduğu görülmüştür. Sayısal yöntem ekransız durum için deneysel sonuçlarla da doğrulanmıştır.
References
- ICNIRP, “Guidelines for Limiting Exposure to Time Varying Electric Magnetic and Electromagnetic Fields (upto 300 GHz)”. Health Physics, 74(4), 494-522, 1998.
- Sevgi L. “Çevremizdeki Elektrik ve Manyetik Alanlar”. Endüstriyel & Otomasyon, 2005.
- Levy S. “Electromagnetic Shielding Effect of an Infinite Plane Conducting Sheet Placed between Circular Coaxial Cables”. Proceedings of the Institute of Radio Engineers, 21, 923-941, 1936.
- Schelkunoff SA. Electromagnetic Waves, 1st Ed. New York. USA, D. Van Nostrand Company, 1943.
- Schultz RB, Plantz VC, Brush DR. “Shielding Theory and Practice”. Compatibility, 30(3), 187-201, 1988.
- Hasselgren L, Luomi J. “Geometrical Aspects of Magnetic Extremely Shielding IEEE Transactions on Electromagnetic Compatibility, 37(3), 409-420, 1995. Low Frequencies”.
- Tekin I, Newman EH. “Moment Method Analysis of the Magnetic Shielding Factor of a Conducting TM Shield at ELF”. IEEE Transactions on Electromagnetic Compatibility, 38(4), 585-590, 1996.
- Olsen RG, Istenic M, Zunko P. “On Simple Methods for Calculating ELF Shielding of Infinite Planar Shields”. IEEE Transactions on Electromagnetic Compatibility, 45(3), 538-547, 2003.
- Istenic M, Olsen RG. “A Simple Hybrid Method for ELF Shielding IEEE Transactions on Electromagnetic Compatibility, 46(2), 199-207, 2004. Finite Planar Shields”. Enclosures Analyzing Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17(3),117-122, 2011. with Apertures”.
- Koroglu S, Sergeant P, Umurkan N. “Comparison of Analytical, Finite Element and Neural Network Methods to Study Magnetic Shielding”. Simulation Modeling Practice and Theory, 18(2), 206-216, 2010.
- Du Y, Burnett J. “Magnetic Shielding Principles of Linear Cylindrical IEEE 1996 International Symposium on Electromagnetic Compatibility, 19-23 August 1996. at
- Power-Frequency”. Santa Clara, California, USA,
- Pino-Lopez JC, Cruz-Romero P, Serrano-Iribarnegaray L, “Impact Two-Component Magnetic Shields on the Ampacity of Underground Power Cables”. Progress in Electromagnetics Research, 135, 601-625, 2013. Losses in Closed
- Sergeant P, Koroglu S. “Electromagnetic Losses in Magnetic Shields for Buried High Voltage Cables”. Progress 115, 441-460, 2011. Research-PIER,
- Köroğlu S. Elektrik Güç Sistemlerinde Manyetik Alan Ekranlanmasının Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2010. Doktora Tezi,