BibTex RIS Cite

Image Searching within Another Image Using Image Matching and Genetic Algorithms

Year 2015, Volume: 21 Issue: 5, 182 - 193, 30.10.2015

Abstract

Main focus of this work is to realize image searching within another image in an efficient way. Image searching within another image is accomplished through the integrated use of image matching techniques and searching algorithms. Artificial neural networks along with various image features such as average color value, color standard deviation, correlation and edge parameters are used for image matching whereas genetic algorithms were used for image searching. In the work presented in this paper, an integrated method based on smart searching algorithms, quick image matching methods and parallel programming techniques were proposed and implemented. Proposed method was tested on several low and high-resolution reference and template images. Results revealed that the proposed method can successfully match images and significantly reduce the total search time.

References

  • Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. London, England, Prentice Hall, 2008.
  • Müller H, Michoux N, Bandon D, Geissbuhler A. “A Review of Content-Based Image Retrieval Systems in Medical Applications-Clinical Benefits and fuTure Directions”. International 73(1), 1-23, 2004. of Journal Medical Informatics,
  • Kekre HB, Thepade SD, Maloo A. “Query by Image Content International Journal of Engineering, Science and Technology, 2(6), 1612-1622, 2010. Techniques”.
  • Dubey RS, Choubey R, Bhattacharjee J. “Multi Feature Content Based Image Retrieval”. (IJCSE) International Journal on Computer Science and Engineering, 2(6), 2145-2149, 2010.
  • Singh UP, Jain S, Ahmed GF. “Content Base Image Retrieval Using Phong Shading”. (IJCSIS) International Journal of Computer Science and Information Security, 8(1), 301-306, 2010.
  • Keysers D, Unger W. “Elastic Image Matching is NP-Complete”. 24(1-3), 445-453, 2003. Recognition Letters,
  • Shu X, Wu XJ. “A Novel Contour Descriptor for 2D Shape Matching and its Application to Image Retrieval”. Image and Vision Computing, 29(4), 286-294, 2011.
  • ElAlami ME. “A Novel Image Retrieval Model Based on the Most Relevant Features”. Knowledge-Based Systems, 24(1), 23-32, 2011.
  • Torres RS, Falcao AX, Gonçalves MA, Papa JP, Zhang B, Fan W, Fox EA. “A Genetic Programming Framework for Content-Based Image Retrieval”. Pattern Recognition, 42(2), 283-292, 2009.
  • Ferreira CD, Santos JA, Torres RS, Gonçalves MA, Rezende RC, Fan W. “Relevance Feedback Based on Genetic Programming for Image Retrieval”. Pattern Recognition Letters, 32(1), 27-37, 2011.
  • Liu Y, Zhang D, Lu G, Ma WY. “A Survey of Content-Based with Image Pattern Recognition, 40(1), 262-282, 2007. High-Level Semantics”.
  • Wang XY, Yu YJ, Yang HY. “An Effective Image Retrieval Scheme Using Color, Texture and Shape Features”. Computer Standards & Interfaces, 33(1), 59-68, 2011.
  • Lin C, Chang HJ. “Identification of Pressurized Water Using Reactor Annals of Nuclear Energy, 38(7), 1662-1666, 2011.
  • Yuan Y, Pang Y, Wang K, Shang M. “Efficient Image Matching Using Weighted Voting”. Pattern Recognition Letters, 33(4), 471-475, 2011.
  • Yan H, Yang J, Yang J. “Bimode Model for Face Recognition and Face Representation”. Neurocomputing, 74(5), 741-748, 2011.
  • Kumar R, Vikram BRD. “Fingerprint Matching Using Multi-Dimensional ANN”. Engineering Applications of Artificial Intelligence, 23(2), 222-228, 2010.
  • Mattoccia S, Tombari F, Stefano LD. “Efficient Template Matching for Multi-Channel Images”. Pattern Recognition Letters, 32(5), 694-700, 2011.
  • Bunte K, Biehl M, Jonkman MF, Petkov N. “Learning Effective Color Features for Content Based Image Retrieval in Dermatology”. Pattern Recognition, 44(9), 1892-1902, 2010.
  • Moon YS, Kim BM, Kim MS, Whang KY. “Scaling-Invariant Boundary Image Matching Using Time-Series Matching Techniques”. 69(1), 1022-1042, 2010. Knowledge Engineering,
  • Choi MS, Kim WY. “A Novel two Stage Template Matching Method for Rotation and Illumination Invariance”. Pattern Recognition, 35(1), 119-129, 2002.
  • Chang SH, Cheng FH, Hsu WH, Wu GZ. “Fast Algorithm for Point Pattern Matching: Invariant to Translations, Rotations and Scale Changes”. Pattern Recognition, 30(2), 311-320, 1997.
  • Ding L, Goshtasby A, Satter M. “Volume Image Registration by Template Matching”. Image and Vision Computing, 19(12), 821-832, 2001.
  • Kwok SH, Zhao JL. “Content-Based Object Organization for Efficient Image Retrieval in Image Databases”. Decision Support Systems, 42(3), 1901-1916, 2006.
  • Fernandez X. “Template Matching of Binary Targets in Grey-Scale Images: A Nonparametric Approach”. Pattern Recognition, 30(7), 1175-1182, 1997.
  • Debella-Gilo M, Kaab A. “Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation”. Remote Sensing of Environment, 115(1), 130-142, 2011.
  • Fredriksson K, Ukkonen E. “Combinatorial Methods for Approximate Image Matching Under Translations and Rotations”. 20(11-13), 1249-1258, 1999. Recognition Letters,
  • Haykin S. Neural Networks and Learning Machines. 3rd ed. New Jersey, USA, Prentice Hall, 2009.
  • Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Boston, MA, USA, Addison-Wesley Professional, 1989. Ek A: Sözde Kodlar
  • Genetik Algoritmalar için Tanımlanan Popülasyon Veri
  • Yapısına Birey Ekleme 1. Başla, 2. Listeye eklenecek elemanın uygunluk değeri ile sıralı
  • listede ikili arama yap,
  • Arama sonucunda dönen değer (indis) negatif ise,
  • a. Listenin –indis-1 konumuna yeni bireyi yerleştir, b. 5. adıma git,
  • Listenin indis konumuna yeni bireyi yerleştir, 5. Bitir.
  • Genetik Öğrenme Algoritması 1. Başla, 2. Başlangıç nüfusu sinir ağı örnekleri ile rasgele oluştur, 3. Hata Değeri > Eşik Değeri Olduğu Sürece Tekrarla, a. Öğrenme verileri üzerinde karesel hata ile uygunluk değerlendir, b. En iyi ağları çaprazla, c. Mutasyon uygula, 4. Bitir.
  • Görüntü içinde görüntü arama sürecini gösteren akış
  • diyagramı (Şekil 11) 1. Başla, 2. Ana formdaki resim kutularına referans ve şablon
  • görüntüleri yükle (modül1),
  • Görüntü eşleme yöntemini belirle (modül2),
  • Referans görüntüyü ara ve eşleşen alt görüntüleri tespit et (modül3),
  • Eşleşen görüntüleri referans görüntüde, eşleşme bilgilerini liste kutusunda görüntüle (modül4), 6. Bitir.
  • Görüntü eşleme sürecini gösteren akış diyagramı (Şekil 12) 1. Belirlenen görüntü eşleme yöntemi yapay sinir ağları (YSA) ise,
  • a. YSA için şablon görüntü taslağını oluştur,
  • b. Şablon görüntü boyutundaki alt görüntüleri griye çevir,
  • c. Gri görüntülere histogram eşitleme uygula
  • d. Görüntülerden ilgili diğerlerini ilgili olmayan girişler olarak eğitim kümesine ver, olanları ilgili,
  • e. Ağırlık (rasgele) ve eşik değerlerini belirle, f.
  • g. Ağ eğitimini gerçekleştir,
  • h. Yapay sinir ağını kaydet. 2. Değilse,
  • a. Şablon görüntüye seçili görüntü işleme tekniğini uygula,
  • b. Elde edilen veriyi sakla,
  • Görüntü eşleme yöntemine göre görüntüleri eşleştir.
  • Akıllı arama (Şekil 13) 1. Başlangıç nesli (alt görüntüler için konum [X-Y]
  • bilgisi) rasgele belirle,
  • Ebeveynlerin en iyilerinin belli bir kısmını ve kalanlardan rasgele belirli bir kısmı doğrudan yeni nesle aktar,
  • Kalan bireyler üzerinde çaprazlama ve mutasyon uygula,
  • Bireylerin uygunluk değerlerini hesapla,
  • Nesil sayısına ulaşılmadı ise 2. adıma git,
  • En iyi bireyleri görüntüle (nesil sayısına ulaşıldı).
  • Paralel arama ve çoklu boyutlandırma (Şekil 13) 1. Görüntü ölçeklendirme bitmedi ise tekrarla,
  • a. Yeni ölçeklendirmeyi referans görüntüye ve şablon görüntüye uygula,
  • b. Tüm iş parçacıkları sonlanana kadar tekrarla (mevcut ölçekte),
  • i. Referans görüntüyü ara ve eşleşen
  • görüntüleri tespit et, c. 1. adıma git.
  • Arama sonuçlarını göster (görüntü ölçeklendirme tamamlandı).

Görüntü Eşleme ve Genetik Algoritmalar Kullanarak Görüntü içinde Görüntü Arama

Year 2015, Volume: 21 Issue: 5, 182 - 193, 30.10.2015

Abstract

Bu çalışmada esas alınan problem, görüntü içinde görüntü aramayı etkin bir şekilde gerçekleştirebilmektir. Bu amaçla görüntü işleme kapsamında yer alan görüntü eşleme teknikleri ile arama algoritmaları birlikte kullanılmıştır. Görüntü eşleme için Yapay Sinir Ağları ile görüntünün ortalama renk değeri, görüntüdeki renk değerlerinin standart sapması, korelasyon ve görüntü kenar parametreleri gibi özellikler; görüntü arama için Genetik Algoritmalar kullanılmıştır. Bu çalışmada, akıllı arama algoritmaları, hızlı görüntü eşleme yöntemleri ve paralel programlama tekniklerine dayanan bütünleşik bir yöntem önerilmiş ve kullanılmıştır. Önerilen yöntem çok sayıda düşük ve yüksek çözünürlüklü referans ve şablon görüntü üzerinde test edilmiştir. Elde edilen sonuçlar önerilen yöntemin eşleşen görüntüleri elde etmede başarılı olduğunu ve toplam arama süresini azalttığını göstermiştir.

References

  • Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. London, England, Prentice Hall, 2008.
  • Müller H, Michoux N, Bandon D, Geissbuhler A. “A Review of Content-Based Image Retrieval Systems in Medical Applications-Clinical Benefits and fuTure Directions”. International 73(1), 1-23, 2004. of Journal Medical Informatics,
  • Kekre HB, Thepade SD, Maloo A. “Query by Image Content International Journal of Engineering, Science and Technology, 2(6), 1612-1622, 2010. Techniques”.
  • Dubey RS, Choubey R, Bhattacharjee J. “Multi Feature Content Based Image Retrieval”. (IJCSE) International Journal on Computer Science and Engineering, 2(6), 2145-2149, 2010.
  • Singh UP, Jain S, Ahmed GF. “Content Base Image Retrieval Using Phong Shading”. (IJCSIS) International Journal of Computer Science and Information Security, 8(1), 301-306, 2010.
  • Keysers D, Unger W. “Elastic Image Matching is NP-Complete”. 24(1-3), 445-453, 2003. Recognition Letters,
  • Shu X, Wu XJ. “A Novel Contour Descriptor for 2D Shape Matching and its Application to Image Retrieval”. Image and Vision Computing, 29(4), 286-294, 2011.
  • ElAlami ME. “A Novel Image Retrieval Model Based on the Most Relevant Features”. Knowledge-Based Systems, 24(1), 23-32, 2011.
  • Torres RS, Falcao AX, Gonçalves MA, Papa JP, Zhang B, Fan W, Fox EA. “A Genetic Programming Framework for Content-Based Image Retrieval”. Pattern Recognition, 42(2), 283-292, 2009.
  • Ferreira CD, Santos JA, Torres RS, Gonçalves MA, Rezende RC, Fan W. “Relevance Feedback Based on Genetic Programming for Image Retrieval”. Pattern Recognition Letters, 32(1), 27-37, 2011.
  • Liu Y, Zhang D, Lu G, Ma WY. “A Survey of Content-Based with Image Pattern Recognition, 40(1), 262-282, 2007. High-Level Semantics”.
  • Wang XY, Yu YJ, Yang HY. “An Effective Image Retrieval Scheme Using Color, Texture and Shape Features”. Computer Standards & Interfaces, 33(1), 59-68, 2011.
  • Lin C, Chang HJ. “Identification of Pressurized Water Using Reactor Annals of Nuclear Energy, 38(7), 1662-1666, 2011.
  • Yuan Y, Pang Y, Wang K, Shang M. “Efficient Image Matching Using Weighted Voting”. Pattern Recognition Letters, 33(4), 471-475, 2011.
  • Yan H, Yang J, Yang J. “Bimode Model for Face Recognition and Face Representation”. Neurocomputing, 74(5), 741-748, 2011.
  • Kumar R, Vikram BRD. “Fingerprint Matching Using Multi-Dimensional ANN”. Engineering Applications of Artificial Intelligence, 23(2), 222-228, 2010.
  • Mattoccia S, Tombari F, Stefano LD. “Efficient Template Matching for Multi-Channel Images”. Pattern Recognition Letters, 32(5), 694-700, 2011.
  • Bunte K, Biehl M, Jonkman MF, Petkov N. “Learning Effective Color Features for Content Based Image Retrieval in Dermatology”. Pattern Recognition, 44(9), 1892-1902, 2010.
  • Moon YS, Kim BM, Kim MS, Whang KY. “Scaling-Invariant Boundary Image Matching Using Time-Series Matching Techniques”. 69(1), 1022-1042, 2010. Knowledge Engineering,
  • Choi MS, Kim WY. “A Novel two Stage Template Matching Method for Rotation and Illumination Invariance”. Pattern Recognition, 35(1), 119-129, 2002.
  • Chang SH, Cheng FH, Hsu WH, Wu GZ. “Fast Algorithm for Point Pattern Matching: Invariant to Translations, Rotations and Scale Changes”. Pattern Recognition, 30(2), 311-320, 1997.
  • Ding L, Goshtasby A, Satter M. “Volume Image Registration by Template Matching”. Image and Vision Computing, 19(12), 821-832, 2001.
  • Kwok SH, Zhao JL. “Content-Based Object Organization for Efficient Image Retrieval in Image Databases”. Decision Support Systems, 42(3), 1901-1916, 2006.
  • Fernandez X. “Template Matching of Binary Targets in Grey-Scale Images: A Nonparametric Approach”. Pattern Recognition, 30(7), 1175-1182, 1997.
  • Debella-Gilo M, Kaab A. “Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation”. Remote Sensing of Environment, 115(1), 130-142, 2011.
  • Fredriksson K, Ukkonen E. “Combinatorial Methods for Approximate Image Matching Under Translations and Rotations”. 20(11-13), 1249-1258, 1999. Recognition Letters,
  • Haykin S. Neural Networks and Learning Machines. 3rd ed. New Jersey, USA, Prentice Hall, 2009.
  • Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Boston, MA, USA, Addison-Wesley Professional, 1989. Ek A: Sözde Kodlar
  • Genetik Algoritmalar için Tanımlanan Popülasyon Veri
  • Yapısına Birey Ekleme 1. Başla, 2. Listeye eklenecek elemanın uygunluk değeri ile sıralı
  • listede ikili arama yap,
  • Arama sonucunda dönen değer (indis) negatif ise,
  • a. Listenin –indis-1 konumuna yeni bireyi yerleştir, b. 5. adıma git,
  • Listenin indis konumuna yeni bireyi yerleştir, 5. Bitir.
  • Genetik Öğrenme Algoritması 1. Başla, 2. Başlangıç nüfusu sinir ağı örnekleri ile rasgele oluştur, 3. Hata Değeri > Eşik Değeri Olduğu Sürece Tekrarla, a. Öğrenme verileri üzerinde karesel hata ile uygunluk değerlendir, b. En iyi ağları çaprazla, c. Mutasyon uygula, 4. Bitir.
  • Görüntü içinde görüntü arama sürecini gösteren akış
  • diyagramı (Şekil 11) 1. Başla, 2. Ana formdaki resim kutularına referans ve şablon
  • görüntüleri yükle (modül1),
  • Görüntü eşleme yöntemini belirle (modül2),
  • Referans görüntüyü ara ve eşleşen alt görüntüleri tespit et (modül3),
  • Eşleşen görüntüleri referans görüntüde, eşleşme bilgilerini liste kutusunda görüntüle (modül4), 6. Bitir.
  • Görüntü eşleme sürecini gösteren akış diyagramı (Şekil 12) 1. Belirlenen görüntü eşleme yöntemi yapay sinir ağları (YSA) ise,
  • a. YSA için şablon görüntü taslağını oluştur,
  • b. Şablon görüntü boyutundaki alt görüntüleri griye çevir,
  • c. Gri görüntülere histogram eşitleme uygula
  • d. Görüntülerden ilgili diğerlerini ilgili olmayan girişler olarak eğitim kümesine ver, olanları ilgili,
  • e. Ağırlık (rasgele) ve eşik değerlerini belirle, f.
  • g. Ağ eğitimini gerçekleştir,
  • h. Yapay sinir ağını kaydet. 2. Değilse,
  • a. Şablon görüntüye seçili görüntü işleme tekniğini uygula,
  • b. Elde edilen veriyi sakla,
  • Görüntü eşleme yöntemine göre görüntüleri eşleştir.
  • Akıllı arama (Şekil 13) 1. Başlangıç nesli (alt görüntüler için konum [X-Y]
  • bilgisi) rasgele belirle,
  • Ebeveynlerin en iyilerinin belli bir kısmını ve kalanlardan rasgele belirli bir kısmı doğrudan yeni nesle aktar,
  • Kalan bireyler üzerinde çaprazlama ve mutasyon uygula,
  • Bireylerin uygunluk değerlerini hesapla,
  • Nesil sayısına ulaşılmadı ise 2. adıma git,
  • En iyi bireyleri görüntüle (nesil sayısına ulaşıldı).
  • Paralel arama ve çoklu boyutlandırma (Şekil 13) 1. Görüntü ölçeklendirme bitmedi ise tekrarla,
  • a. Yeni ölçeklendirmeyi referans görüntüye ve şablon görüntüye uygula,
  • b. Tüm iş parçacıkları sonlanana kadar tekrarla (mevcut ölçekte),
  • i. Referans görüntüyü ara ve eşleşen
  • görüntüleri tespit et, c. 1. adıma git.
  • Arama sonuçlarını göster (görüntü ölçeklendirme tamamlandı).
There are 65 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Karakoc This is me

Kadir Kavaklıoğlu

Publication Date October 30, 2015
Published in Issue Year 2015 Volume: 21 Issue: 5

Cite

APA Karakoc, M., & Kavaklıoğlu, K. (2015). Image Searching within Another Image Using Image Matching and Genetic Algorithms. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(5), 182-193. https://doi.org/10.5505/pajes.2014.49354
AMA Karakoc M, Kavaklıoğlu K. Image Searching within Another Image Using Image Matching and Genetic Algorithms. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2015;21(5):182-193. doi:10.5505/pajes.2014.49354
Chicago Karakoc, Mehmet, and Kadir Kavaklıoğlu. “Image Searching Within Another Image Using Image Matching and Genetic Algorithms”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21, no. 5 (October 2015): 182-93. https://doi.org/10.5505/pajes.2014.49354.
EndNote Karakoc M, Kavaklıoğlu K (October 1, 2015) Image Searching within Another Image Using Image Matching and Genetic Algorithms. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 5 182–193.
IEEE M. Karakoc and K. Kavaklıoğlu, “Image Searching within Another Image Using Image Matching and Genetic Algorithms”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 21, no. 5, pp. 182–193, 2015, doi: 10.5505/pajes.2014.49354.
ISNAD Karakoc, Mehmet - Kavaklıoğlu, Kadir. “Image Searching Within Another Image Using Image Matching and Genetic Algorithms”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21/5 (October 2015), 182-193. https://doi.org/10.5505/pajes.2014.49354.
JAMA Karakoc M, Kavaklıoğlu K. Image Searching within Another Image Using Image Matching and Genetic Algorithms. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2015;21:182–193.
MLA Karakoc, Mehmet and Kadir Kavaklıoğlu. “Image Searching Within Another Image Using Image Matching and Genetic Algorithms”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 21, no. 5, 2015, pp. 182-93, doi:10.5505/pajes.2014.49354.
Vancouver Karakoc M, Kavaklıoğlu K. Image Searching within Another Image Using Image Matching and Genetic Algorithms. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2015;21(5):182-93.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif