Research Article
BibTex RIS Cite

Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi

Year 2017, Volume: 23 Issue: 6, 687 - 693, 15.12.2017

Abstract

Enerji
tüketiminin azaltılması ülkelerin gelişimi için çok önemlidir. Yapılarda enerji
tüketimi bu nedenle büyük önem arz etmektedir. Binalarda ısı kaybını azaltmak
için ısı köprülerini, ısı köprülerini oluşturan yalıtım sisteminin etkilerini
ve kullanılan malzemenin davranışlarını çok iyi bilmek gerekmektedir. Bu
çalışma, teras katlarda
beton, duvar ve yalıtım malzemelerinin ısıl iletkenlik katsayılarının
değişiminin
ısı köprüsüne etkilerini incelenmektedir. Bunun için literatürden farklı olarak Türkiye'de
betonarme binaların teras katları için en sık kullanılan 9 kesit üzerinde
inceleme gerçekleştirilmiştir. "Yalıtım sistemi, beton ve/veya duvar
malzemesinin değişiminin ısı köprüsüne etkisi ne olmaktadır?" sorusuna
yanıt aranmıştır. Hesaplamalar TS 825’te belirtilen birinci derece gün bölgesi
için sıvalı durum göz önünde bulundurularak yapılmış olup farklı yalıtım
çeşitlerinde duvar-döşeme-kiriş birleşimlerinin ısı akıları ve sıcaklıkları
hesaplanmıştır.  Hesaplamalarda gerçeğe
yakın değerler veren ve sonlu elemanlar metodunu kullanan, QuickField 5.6
programından yararlanılmıştır. Bu çalışmanın sonuçları ile ısı köprülerinde
beton, duvar ve yalıtım malzemelerinin ısıl iletkenlik değerlerinin değişiminin
iki boyutlu olarak nasıl değiştiği görülmektedir. En büyük ısı kaybı, betonun
ısıl iletkenlik katsayısının artması sonucunda elde edilmektedir. Ayrıca elde
edilen sonuçlarla teras katlarda kullanılan yalıtım çeşitlerinin hangisinin
daha verimli olduğu sorularına da yanıt verilmektedir.

References

  • Buyukakın MK, Oztuna S, Mihlayanlar E. "Thermal analysis of thermal bridges of concrete beams in buildings". International Scientific Conference UNITECH, Gabrovo, 21-22 November 2014.
  • Dilmac S, Guner A, Senkal F, Kartal S. “Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164”. Energy Conversetion and Management, 48(3), 826-835, 2007.
  • Dilmac S, Alamut O. “Comparison of international thermal analysis methods of thermal bridges”. 1st International Exergy, Energy and Environment Symposium, Izmir, Turkey, 13-17 July 2003.
  • Dilmac S, Can A, Kartal S. “The effect of climatic conditions and insulation systems on the thermal behavior of floors”. Tesisat Mühendisliği Dergisi, 82, 49-65, 2004.
  • TS 825 Turkish Thermal Insulation Standard “Thermal Insulation Requirements for Buildings”, Ankara, Turkey, May, 2008.
  • EN 832 “Thermal Performans of Building, Calculation of Energy Use for Heating”. Residential Buildings-2000, European Committee for Standardization, Brussels, 2000.
  • ISO 9164 “Thermal Insulation-Calculation of space Heating Requirements for Residential Buildings”. International Organization for Standards, Geneva, 1989.
  • TS EN ISO 10221-1 “Thermal Bridges in Building Constructions – Heat flows and surface temperatures” Part1: General calculation methods, Turkish Standards Institute, Ankara, 2000.
  • TS EN ISO 10211-2 “Thermal Bridges in Buildings Constructions–Heat flows and surface temperatures” Part2: Linear Thermal Bridges, Turkish Standards Institute, Ankara, 2000.
  • Mao G, Johonnesson G. “Dynamic calculation of thermal bridges”. Energy and Buildings, 26(3), 233-240, 1997.
  • Salgon JJ, Neveu A. “Application of modal analysis to modelling of thermal bridges in buildings”. Energy and Buildings, 10(2), 109-120, 1987.
  • Hassid S. “Thermal bridges across multilayer walls: An integral approach”. Building and Environment, 25(2), 143-150, 1990.
  • Hassid S. “Thermal bridges in homogeneous walls: A simplified approach”. Building and Environment, 24(3), 259-264, 1989.
  • Kosny J, Christian JE. “Thermal evaluation of several configuration of insulation and structural materials for some metal stud walls”. Energy and Buildings, 22(2), 157-163, 1995.
  • Clark MR, McCann DM, Forde MC. “Application of infrared thermography to nondestructive testing of concrete and masonry bridges”. NDT & E International, 36(4), 265-275, 2003.
  • Kośny J, Kossecka E.“Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs”. Energy and Buildings, 34(5), 445-454, 2002.
  • Larbi BA. “Statical modeling of heat transfer for thermal bridges of buildigs”. Energy and Buildings, 37(9), 945-951, 2005.
  • Theodosiou TG, Papadopoulos AM. "The impact of thermal bridges on the energy demand of buildings with double brick wall constructions". Energy and Buildings, 40(11), 2083-2089, 2008.
  • Evola G, Margani G, Marletta L. "Energy and cost evaluation of thermal bridge correction in Mediterranean climate". Energy and Buildings, 43(9), 2385-2393, 2011.
  • Berggren B, Wall M. "Calculation of thermal bridges in (Nordic) building envelopes–risk of performance failure due to inconsistent use of methodology". Energy and Buildings, 65, 331-339, 2013.
  • Garay R, Uriarte A, Inés A. "Performance assessment of thermal bridge elements into a full scale experimental study of a building façade". Energy and Buildings, 85, 579-591, 2014.
  • Larbi BA. “Statical modeling of heat transfer for thermal bridges of buildigs”. Energy and Buildings, 37(9), 945-951, 2005.
  • Gao Y, Roux JJ, Zhao LH, Jiang Y. “Dynamic building simulation: a low order model for thermal bridges losses”. Energy and Buildings, 40(12), 2236-2240, 2008.
  • Martin K, Erkoreka A, Flores I, Odriozola M, Sala JM. “Problems in the calculation of thermal bridges in dynamic conditions”. Energy and Buildings, 43(2), 529-538, 2011.
  • Akgün G, Dilmac S. “Comparison of mathematical models used in thermal bridge problems”. İstanbul Technical University Journal/d, 4(5), 3-16, 2005.
  • Bakış A, Effects of Thermal Conductivity Changes to the Thermal Bridge Behavior in Concrete, Walls and Insulation Materials at Terrace Floors. Master’s Thesis, Namık Kemal University, Tekirdag, Turkey, 2011.

The effect of material properties and isolation system on thermal bridge behavior

Year 2017, Volume: 23 Issue: 6, 687 - 693, 15.12.2017

Abstract

Reducing
the energy consumption is very important for the development of the countries.
For this reason, energy consumption at the buildings is very important. It is
necessary to know behaviours of thermal bridges, affects at insulation system utilized
and materials constituting the thermal bridges very well to cut down thermal
loss in buildings, this study searches affects at change in the thermal
conductivity coefficients of concrete, wall and insulation materials used in
the terrace floors on the thermal bridges . For this reason, apart from
literature, examination on 9 insulation sections most frequently used for the
terrace floors at reinforced concrete buildings in Turkey were realized. What
is the effect of changes at insulation system and/or the concrete and the wall
materials on the thermal bridge?”. Answers to this question was  researched. Calculations were made for
temperature and heat flux distributions at wall-floor-beam combinations at
different insulation states considering 
plastered state for first degree day area, as mentioned in TS825
Standard. For the calculations, QuickField 5.6 program, which gives realistic
values and utilizes finite elements method was used.  With the results of this study, it was  seen how the behavior of the variance of the
concrete, wall and insulation heat conductivity values at the thermal bridges
changes in a two-dimensional way. As a result of the calculations, the biggest
heat loss was obtained when thermal conductivity coefficient of the concrete increased.
Besides, answers are given to  questions
such as which is the most productive section 
used in terrace floors?

References

  • Buyukakın MK, Oztuna S, Mihlayanlar E. "Thermal analysis of thermal bridges of concrete beams in buildings". International Scientific Conference UNITECH, Gabrovo, 21-22 November 2014.
  • Dilmac S, Guner A, Senkal F, Kartal S. “Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164”. Energy Conversetion and Management, 48(3), 826-835, 2007.
  • Dilmac S, Alamut O. “Comparison of international thermal analysis methods of thermal bridges”. 1st International Exergy, Energy and Environment Symposium, Izmir, Turkey, 13-17 July 2003.
  • Dilmac S, Can A, Kartal S. “The effect of climatic conditions and insulation systems on the thermal behavior of floors”. Tesisat Mühendisliği Dergisi, 82, 49-65, 2004.
  • TS 825 Turkish Thermal Insulation Standard “Thermal Insulation Requirements for Buildings”, Ankara, Turkey, May, 2008.
  • EN 832 “Thermal Performans of Building, Calculation of Energy Use for Heating”. Residential Buildings-2000, European Committee for Standardization, Brussels, 2000.
  • ISO 9164 “Thermal Insulation-Calculation of space Heating Requirements for Residential Buildings”. International Organization for Standards, Geneva, 1989.
  • TS EN ISO 10221-1 “Thermal Bridges in Building Constructions – Heat flows and surface temperatures” Part1: General calculation methods, Turkish Standards Institute, Ankara, 2000.
  • TS EN ISO 10211-2 “Thermal Bridges in Buildings Constructions–Heat flows and surface temperatures” Part2: Linear Thermal Bridges, Turkish Standards Institute, Ankara, 2000.
  • Mao G, Johonnesson G. “Dynamic calculation of thermal bridges”. Energy and Buildings, 26(3), 233-240, 1997.
  • Salgon JJ, Neveu A. “Application of modal analysis to modelling of thermal bridges in buildings”. Energy and Buildings, 10(2), 109-120, 1987.
  • Hassid S. “Thermal bridges across multilayer walls: An integral approach”. Building and Environment, 25(2), 143-150, 1990.
  • Hassid S. “Thermal bridges in homogeneous walls: A simplified approach”. Building and Environment, 24(3), 259-264, 1989.
  • Kosny J, Christian JE. “Thermal evaluation of several configuration of insulation and structural materials for some metal stud walls”. Energy and Buildings, 22(2), 157-163, 1995.
  • Clark MR, McCann DM, Forde MC. “Application of infrared thermography to nondestructive testing of concrete and masonry bridges”. NDT & E International, 36(4), 265-275, 2003.
  • Kośny J, Kossecka E.“Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs”. Energy and Buildings, 34(5), 445-454, 2002.
  • Larbi BA. “Statical modeling of heat transfer for thermal bridges of buildigs”. Energy and Buildings, 37(9), 945-951, 2005.
  • Theodosiou TG, Papadopoulos AM. "The impact of thermal bridges on the energy demand of buildings with double brick wall constructions". Energy and Buildings, 40(11), 2083-2089, 2008.
  • Evola G, Margani G, Marletta L. "Energy and cost evaluation of thermal bridge correction in Mediterranean climate". Energy and Buildings, 43(9), 2385-2393, 2011.
  • Berggren B, Wall M. "Calculation of thermal bridges in (Nordic) building envelopes–risk of performance failure due to inconsistent use of methodology". Energy and Buildings, 65, 331-339, 2013.
  • Garay R, Uriarte A, Inés A. "Performance assessment of thermal bridge elements into a full scale experimental study of a building façade". Energy and Buildings, 85, 579-591, 2014.
  • Larbi BA. “Statical modeling of heat transfer for thermal bridges of buildigs”. Energy and Buildings, 37(9), 945-951, 2005.
  • Gao Y, Roux JJ, Zhao LH, Jiang Y. “Dynamic building simulation: a low order model for thermal bridges losses”. Energy and Buildings, 40(12), 2236-2240, 2008.
  • Martin K, Erkoreka A, Flores I, Odriozola M, Sala JM. “Problems in the calculation of thermal bridges in dynamic conditions”. Energy and Buildings, 43(2), 529-538, 2011.
  • Akgün G, Dilmac S. “Comparison of mathematical models used in thermal bridge problems”. İstanbul Technical University Journal/d, 4(5), 3-16, 2005.
  • Bakış A, Effects of Thermal Conductivity Changes to the Thermal Bridge Behavior in Concrete, Walls and Insulation Materials at Terrace Floors. Master’s Thesis, Namık Kemal University, Tekirdag, Turkey, 2011.
There are 26 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Güler Gaygusuzoğlu 0000-0002-2350-4856

Adem Bakış 0000-0001-9762-8600

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 23 Issue: 6

Cite

APA Gaygusuzoğlu, G., & Bakış, A. (2017). Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 687-693.
AMA Gaygusuzoğlu G, Bakış A. Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2017;23(6):687-693.
Chicago Gaygusuzoğlu, Güler, and Adem Bakış. “Malzeme özelliklerinin Ve yalıtım Sisteminin Isi köprüsü davranışına Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no. 6 (December 2017): 687-93.
EndNote Gaygusuzoğlu G, Bakış A (December 1, 2017) Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 6 687–693.
IEEE G. Gaygusuzoğlu and A. Bakış, “Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 687–693, 2017.
ISNAD Gaygusuzoğlu, Güler - Bakış, Adem. “Malzeme özelliklerinin Ve yalıtım Sisteminin Isi köprüsü davranışına Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/6 (December 2017), 687-693.
JAMA Gaygusuzoğlu G, Bakış A. Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:687–693.
MLA Gaygusuzoğlu, Güler and Adem Bakış. “Malzeme özelliklerinin Ve yalıtım Sisteminin Isi köprüsü davranışına Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2017, pp. 687-93.
Vancouver Gaygusuzoğlu G, Bakış A. Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(6):687-93.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif