Research Article
BibTex RIS Cite

Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi

Year 2017, Volume: 23 Issue: 8, 945 - 948, 28.12.2017

Abstract

İnsan
sert doku ( kemik gibi) biyo-implant malzemeleri için Ti-Nb esaslı alaşımlar
biyo-uyumları, mekanik özellikleri, korozyon dirençleri gibi özellikleri
açısından umut vadeden malzemelerdir. Bu çalışmada, Nb ilavesinin, Ti-Nb ikili
alaşımının mikroyapı ve mekanik özellikleri üzerine etkisinin incelenmesi
amacıyla saf Ti, Ti-16Nb, Ti-26Nb alaşımları geleneksel toz metalürjisi yöntemi
ile üretilmiştir. Sinterlenmiş numunelerin mikroyapısal gelişimleri ve faz
analizleri optik mikroskop, SEM, EDS, XRD teknikleri kullanılarak
belirlenmiştir. Sinterlenen Ti-Nb alaşımlarının mikroyapısının widmanstatten
α+β yapısından oluştuğu gözlemlenmiştir. Nb içeriğinin ağırlıkça %16’dan %26’ya
artışı ile alaşımın mikrosertlik değeri 430 HV’den 327 HV’ye, eğme mukavemeti
1403 MPa’dan 1168 MPa’a ve elastik modül 103 GPa’dan 90 GPa’a düşmüştür.
Mikroyapı da ise β-fazı miktarı artarken, taneler incelmiştir. Elde edilen
sonuçlar, toz metalürjisi ile üretilmiş Ti-Nb alaşımlarının, klinik
uygulamalarda en yaygın kullanılan Ti-6Al-4V alaşımının yerine tercih
edilebileceğini göstermektedir.

References

  • Tavares AMG, Ramos WS, Blas JCG, Lopes ESN, Caram R, Batista WW, Souza WW. “Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopaedic implants”. Journal of the Mechanical Behavior of Biomedical Materials, 51, 74-87, 2015.
  • Kim HY, Miyazaki S. “Martensitic transformation and superelastic properties of Ti-Nb base alloys”. Materials Transactions, 56, 625-634, 2015.
  • You L, Song X. “A study of young’s modulus T,-Nb-Zr alloys using d electrons alloy theory’’. Scripta Materialia, 67, 57-60, 2012.
  • Dubinskiy S. Ti-Nb-(Zr,Ta) Superelastic Alloys For Medical Implants: Thermomechanical Processing, Structure, Phase Transformations and Functional Properties. PhD Thesis, Ecole De Techologıe Superieure Unıversıte Du Quebec, Montreal, 2013.
  • Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. “New developments of Ti-based alloys for biomedical applications’’. Materials, 7, 1709-1800, 2014.
  • Zhao D, Chang K, Ebel T, Nie H, Willumeit R, Pyczak F. “Sintering behaviour and mechanical properties of metal injection molded Ti-Nb binary alloy as biomaterial’’. Journal of Alloys and Compounds, 640, 393-400, 2015.
  • Greetha M, Singh AK, Asokamani R, Gogia AK. “Ti based biomaterials, the ultimate choice for orthopaedic implants-A review’’. Progress in Materials Science, 54, 397-425, 2009.
  • Wang BL, Zheng YF, Zhao LC. “Effect of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys’’. Materials and Engineering A, 486, 146-151, 2008.
  • Henriques ARV, Bellinati CE, Silva CRM. “Production of Ti-6%Al-7%Nb alloy by powder metallurgy (P/M)”. Journal of Materials Processing Technology, 118, 212-215, 2001. Liu H-W, Bishop DP, Plucknett KP. “Effect of processing variables on production of powder metallurgical titanium’’. Canadian Metallurgical Quarterly, 38-50, 2013.
  • Henriques VAR, Galvani ET, Petroni SLG, Paula MSM, Lemos TG. “Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy’’. Journal Mater Sci, 45, 5844-5850, 2010.
  • Martins GV, Silva CRM, Nunes CA, Henriques VAR. “Microstrutural evolution of Ti-10Nb and Ti-15Nb alloys producted by the blended elemental technique’’. Materials Science Forum, 660-661, 152-157, 2010.
  • Bousson V, Bergot C, Meunier A, Barbot F, Parlies C, Laval A, Laredo J. “CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity’’. Middiaphyseal Femoral CT: Cortical Bone Mineral Density and Porosity, 217, 179-187, 2000.
  • Vilayphiou N, Boutroy S, Rendu S, Rietbergen BV, Chapurlat R. “Age-related changes in bone strength from HR-pQCT derived microarchitestural parameters with an emphasis on the role of cortical porosity’’. Bone, 83, 233-240, 2016.
  • Nazari KA, Nouri A, Hilditch T. “Mechanical properties and microstructure of powder metallurgy Ti-xNb-yMo alloys for implant materials’’. Materials and Design, 88, 1164-1174, 2015.
  • Zhang L, Wang K, Xu L, Xıao S, Chen Y. “Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys’’. Trans. Nonferrous Met. Soc., 25, 2214-2220, 2015.
  • Haghighi S, Liu Y, Cao G, Zhang C. “Influence of Nb on the β→αıı martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys’’. Materials Science and Engineering C, 60, 503-510, 2016.
  • Santos DR, Pereira MS, Cairo CAA, Graça MLA, Henriques VAR. “Isochronal sintering of the blended elemental Ti-35Nb alloy’’. Materials Science and Engineering A, 472, 193-197, 2008.
  • Cheng WW, Lın C.H.J. “Structure, castability and mechanical properties of commercial pure and alloyed titanium cast in graphite mould”. Journal of Oral Rehabilitation, 34, 528-540, 2007.
  • Arciniegas M, Pena J, Manero JM, Paniagua JC, Gil FJ. “Quantum parameters for guiding the design of Ti alloys with shape memory and/or low elastic modulus’’. Philosophical Magazine, 88, 2529-2548, 2008.

Effect of Nb addition on microstructural and mechanical properties of Ti-Nb based alloys produced by powder metallurgy

Year 2017, Volume: 23 Issue: 8, 945 - 948, 28.12.2017

Abstract

Ti-Nb
based alloys are promising materials in terms of material properties, such as
biocompatibility, mechanical properties and corrosion resistance for human hard
tissuse (such as bone) bio implant materials. Present study focused on the
effects of Nb addition on the microstructure and mechanical properties of Ti-Nb
binary alloy. For this purpose, pure Ti, Ti-16Nb, Ti-26Nb alloys were produced
by conventional powder metallurgy (PM) method. Microstructural development and
phase analysis of sintered samples were determined by using optical microscopy,
SEM, EDS, XRD techniques. It was observed that microstructures of sintered
Ti-Nb alloys consist of widmanstatten α+β structure. With an increasing in the
content of Nb (from 16 to 26 wt. %), the micro-hardness values of the alloys decrease from 430 HV to 327
HV, the bending strength of the alloys decreases from 1403 MPa to 1168 MPa and
the elastic modulus of the alloys decreases from 103 GPa to 90 GPa. Also, it is
worth noting that, finer grains achieved and the amount of the β-phase in the
microstructure is increased with increasing Nb content. Results of the
experimental works showed that PM Ti-Nb alloys could be offered as candidate
materials for clinical practice applications as an alternative to Ti-6Al-4V
alloy.

References

  • Tavares AMG, Ramos WS, Blas JCG, Lopes ESN, Caram R, Batista WW, Souza WW. “Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopaedic implants”. Journal of the Mechanical Behavior of Biomedical Materials, 51, 74-87, 2015.
  • Kim HY, Miyazaki S. “Martensitic transformation and superelastic properties of Ti-Nb base alloys”. Materials Transactions, 56, 625-634, 2015.
  • You L, Song X. “A study of young’s modulus T,-Nb-Zr alloys using d electrons alloy theory’’. Scripta Materialia, 67, 57-60, 2012.
  • Dubinskiy S. Ti-Nb-(Zr,Ta) Superelastic Alloys For Medical Implants: Thermomechanical Processing, Structure, Phase Transformations and Functional Properties. PhD Thesis, Ecole De Techologıe Superieure Unıversıte Du Quebec, Montreal, 2013.
  • Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. “New developments of Ti-based alloys for biomedical applications’’. Materials, 7, 1709-1800, 2014.
  • Zhao D, Chang K, Ebel T, Nie H, Willumeit R, Pyczak F. “Sintering behaviour and mechanical properties of metal injection molded Ti-Nb binary alloy as biomaterial’’. Journal of Alloys and Compounds, 640, 393-400, 2015.
  • Greetha M, Singh AK, Asokamani R, Gogia AK. “Ti based biomaterials, the ultimate choice for orthopaedic implants-A review’’. Progress in Materials Science, 54, 397-425, 2009.
  • Wang BL, Zheng YF, Zhao LC. “Effect of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys’’. Materials and Engineering A, 486, 146-151, 2008.
  • Henriques ARV, Bellinati CE, Silva CRM. “Production of Ti-6%Al-7%Nb alloy by powder metallurgy (P/M)”. Journal of Materials Processing Technology, 118, 212-215, 2001. Liu H-W, Bishop DP, Plucknett KP. “Effect of processing variables on production of powder metallurgical titanium’’. Canadian Metallurgical Quarterly, 38-50, 2013.
  • Henriques VAR, Galvani ET, Petroni SLG, Paula MSM, Lemos TG. “Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy’’. Journal Mater Sci, 45, 5844-5850, 2010.
  • Martins GV, Silva CRM, Nunes CA, Henriques VAR. “Microstrutural evolution of Ti-10Nb and Ti-15Nb alloys producted by the blended elemental technique’’. Materials Science Forum, 660-661, 152-157, 2010.
  • Bousson V, Bergot C, Meunier A, Barbot F, Parlies C, Laval A, Laredo J. “CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity’’. Middiaphyseal Femoral CT: Cortical Bone Mineral Density and Porosity, 217, 179-187, 2000.
  • Vilayphiou N, Boutroy S, Rendu S, Rietbergen BV, Chapurlat R. “Age-related changes in bone strength from HR-pQCT derived microarchitestural parameters with an emphasis on the role of cortical porosity’’. Bone, 83, 233-240, 2016.
  • Nazari KA, Nouri A, Hilditch T. “Mechanical properties and microstructure of powder metallurgy Ti-xNb-yMo alloys for implant materials’’. Materials and Design, 88, 1164-1174, 2015.
  • Zhang L, Wang K, Xu L, Xıao S, Chen Y. “Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys’’. Trans. Nonferrous Met. Soc., 25, 2214-2220, 2015.
  • Haghighi S, Liu Y, Cao G, Zhang C. “Influence of Nb on the β→αıı martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys’’. Materials Science and Engineering C, 60, 503-510, 2016.
  • Santos DR, Pereira MS, Cairo CAA, Graça MLA, Henriques VAR. “Isochronal sintering of the blended elemental Ti-35Nb alloy’’. Materials Science and Engineering A, 472, 193-197, 2008.
  • Cheng WW, Lın C.H.J. “Structure, castability and mechanical properties of commercial pure and alloyed titanium cast in graphite mould”. Journal of Oral Rehabilitation, 34, 528-540, 2007.
  • Arciniegas M, Pena J, Manero JM, Paniagua JC, Gil FJ. “Quantum parameters for guiding the design of Ti alloys with shape memory and/or low elastic modulus’’. Philosophical Magazine, 88, 2529-2548, 2008.
There are 19 citations in total.

Details

Subjects Engineering
Journal Section Özel Sayı
Authors

Eren Yılmaz This is me 0000-0001-7264-2588

Azim Gökçe 0000-0002-2286-3259

Fehim Fındık 0000-0003-2537-1951

Hamit Özkan Gülsoy 0000-0001-5366-5741

Publication Date December 28, 2017
Published in Issue Year 2017 Volume: 23 Issue: 8

Cite

APA Yılmaz, E., Gökçe, A., Fındık, F., Gülsoy, H. Ö. (2017). Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 945-948.
AMA Yılmaz E, Gökçe A, Fındık F, Gülsoy HÖ. Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2017;23(8):945-948.
Chicago Yılmaz, Eren, Azim Gökçe, Fehim Fındık, and Hamit Özkan Gülsoy. “Toz Metalurjisi Ile üretilen Biyomedikal Ti-Nb Esaslı alaşımlarda Nb Ilavesinin Mikroyapı Ve Mekanik özelliklere Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no. 8 (December 2017): 945-48.
EndNote Yılmaz E, Gökçe A, Fındık F, Gülsoy HÖ (December 1, 2017) Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 8 945–948.
IEEE E. Yılmaz, A. Gökçe, F. Fındık, and H. Ö. Gülsoy, “Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 8, pp. 945–948, 2017.
ISNAD Yılmaz, Eren et al. “Toz Metalurjisi Ile üretilen Biyomedikal Ti-Nb Esaslı alaşımlarda Nb Ilavesinin Mikroyapı Ve Mekanik özelliklere Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/8 (December 2017), 945-948.
JAMA Yılmaz E, Gökçe A, Fındık F, Gülsoy HÖ. Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:945–948.
MLA Yılmaz, Eren et al. “Toz Metalurjisi Ile üretilen Biyomedikal Ti-Nb Esaslı alaşımlarda Nb Ilavesinin Mikroyapı Ve Mekanik özelliklere Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 8, 2017, pp. 945-8.
Vancouver Yılmaz E, Gökçe A, Fındık F, Gülsoy HÖ. Toz metalurjisi ile üretilen biyomedikal Ti-Nb esaslı alaşımlarda Nb ilavesinin mikroyapı ve mekanik özelliklere etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(8):945-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.