Research Article
BibTex RIS Cite

Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti

Year 2019, Volume: 25 Issue: 5, 603 - 614, 21.10.2019

Abstract

Günümüzde
uzaktan algılama teknolojisi ve görüntü işleme tekniklerin gelişmesiyle
birlikte, uydu görüntüleri tarımsal alanlarda ürün deseninin belirlenmesi
çalışmalarında sıklıkla tercih edilir hâle gelmiştir. Bu çalışmada, yüksek
konumsal çözünürlüklü IKONOS uydu görüntüsünden tarımsal alanlarda
nesne-tabanlı sınıflandırma yöntemi ile ürün desenin belirlenmesi
hedeflenmiştir. Çalışma alanı, Marmara Bölgesi’nde bulunan Bursa ili, Karacabey
ilçesinin güneybatısında yer almakta ve yaklaşık 9×9 km2’lik bir alanı
kapsamaktadır. Domates, mısır, biber, buğday, pirinç ve şeker pancarı bölgede
yetiştirilen başlıca tarım ürünleridir. Çalışmada, IKONOS uydu görüntüsü
çoklu-çözünürlük segmentasyon tekniği ile segmente edilmiştir. Segmentasyon
işleminde gerekli parametrelerden en önemlisi olan ölçek parametresi için en
uygun değer ESP-2 (Estimation of Scale Parameter) yazılımı ile belirlenmiştir.
Diğer segmentasyon parametreleri olan şekil ve bütünlük parametreleri için en
uygun değerler ise, yapılan deneme analizleri neticesinde tespit edilmiştir.
Sınıflandırmanın doğruluğunu artırmak için, görüntünün orijinal bantlarına ek
olarak, normalize edilmiş bitki indeksi (NDVI) bantı ile homojenlik, zıtlık,
farklılık, ortalama, varyans ve entropi doku bantları kullanılmıştır. Sınıflandırma
işlemi, toplam 29 bantlı veri seti kullanılarak eCognition yazılımında
nesne-tabanlı en yakın komşuluk tekniği ile yapılmıştır. Elde edilen
sınıflandırma sonucu, 2212 adet yer gerçeği verisi kullanılarak
değerlendirilmiştir. Doğruluk analizleri neticesinde, sınıflandırmanın genel
doğruluğu %87.5 olarak hesaplanmıştır. Elde edilen sonuçlar, yüksek
çözünürlüklü IKONOS uydu görüntüsünden tarımsal ürün deseni tespitinin
nesne-tabanlı sınıflandırma yöntemiyle yüksek doğrulukta belirlenebildiğini göstermektedir.

References

  • Shanahan J, Schepers J, Francis D, Varvel G, Wilhelm W, Tringe J, Major D. “Use of remote-sensing imagery to estimate corn grain yield”. Agronomy Journal, 93(3), 583-589, 2011.
  • Conrad C, Fritsch S, Zeidler J, Rücker G, Dech S. “Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data”. Remote Sensing, 2(4), 1035-1056, 2010.
  • Antunes A, Lingnau C, Centeno J. “Object oriented analysis and semantic network for high resolution image classification”. Anais XI SBSR, Belo Horizonte, Brazil, 05-10 April 2003.
  • Blaschke T. “Object based image analysis for remote sensing”. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16, 2010.
  • Lu D, Weng Q. “A survey of image classification methods and techniques for improving classification performance”. International Journal of Remote Sensing, 28(5), 823-870, 2007.
  • Mialhea F, Gunnell Y, Ignacio J, Delbart N, Ogania J, Henry S. “Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines”. International Journal of Applied Earth Observation and Geoinformation, 36, 69-82, 2015.
  • Kim M, Madden M, Warner T. Estimation of Optimal Image Object Size for the Segmentation of Forest Stands with Multispectral IKONOS Imagery. Editors: Blaschke T, Lang S, Hay G. Object-Based Image Analysis, 291-307, Berlin, Heidelberg, Springer-Verlag, 2008.
  • Bock M, Xofis P, Mitchley J, Rossner G, Wissen M. “Object-oriented methods for habitat mapping at multiple scales– Case studies from Northern Germany and Wye Downs, UK”. Journal for Nature Conservation, 13(2), 75-89, 2005.
  • Yu Q, Gong P, Clinton N, Biging, G, Kelly M. “Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery”. Photogrammetric Engineering and Remote Sensing, 72(7), 799-811, 2006.
  • Türker M, Özdarıcı A. “Field-based crop classification using SPOT 4, SPOT 5, IKONOS and QuickBird imagery for agricultural areas: a comparison study”. International Journal of Remote Sensing, 32(24), 9735-9768, 2011.
  • Pena-Barragan JM, Ngugi MK, Plant RE, Six J. “Object-based crop identification using multiple vegetation indices, textural features and crop phenology”. Remote Sensing of Environment, 115(6), 1301-1306, 2011.
  • Koutsias N, Mallinis GG, Pleniou M, Voukelatou I, Paschali T, Dimopoulos P. “Object-based classification using a synergy of high spatial (IKONOS) and high spectral (ASTER) satellite data in a rural NATURA 2000 deltaic area”. Proceedings of the 2nd International Conference on Space Technology, Athens, Greece, 15-17 September 2011.
  • Algancı U, Sertel, E, Özdogan M, Örmeci C. “Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in Southeastern Turkey”. Photogrammetric Engineering and Remote Sensing, 79(11), 1053-1065, 2013.
  • Li M, Ma L, Blaschke T, Cheng L, Tiede D. “A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments”. International Journal of Applied Earth Observation and Geoinformation, 49, 87-98, 2016.
  • Singha M, Wu B, Zhang M. “An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India”. Remote Sensing, 8(6), 479, 2016.
  • Zhang H, Li Q, Liu J, Du X, Dong T, McNairn H, Shang J. “Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier”. Geocarto International, 33(10), 1-19, 2017.
  • Haralick RM, Shanmugam K, Dinstein I. “Textural features for image classification”. IEEE Transactions on Systems, 3(6), 610-621, 1973.
  • Smith, A. “Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm”. Journal of Spatial Science, 55(1), 69-79, 2010.
  • Baatz M, Schape A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Editors: Strobl J, Blaschke T, Griesebner G. Angewandte Geographische Informations-Verarbeitung XII, 12-23, Karlsruhe, Germany, Wichmann, 2000.
  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. “Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information”. ISPRS Journal of Photogrammetry and Remote Sensing, 58 (3-4), 239-258, 2004.
  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q. “Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery”. Remote Sensing of Environment, 115(5), 1145-1161, 2011.
  • Kim M, Warner TA, Madden M, Atkinson DS. “Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects”. International Journal of Remote Sensing, 32(10), 2828-2850, 2011.
  • Smith GM, Morton RW. “Real world objects in GEOBIA through the exploitation of existing digital cartography and image segmentation”. Photogrammetric Engineering and Remote Sensing, 76(2), 163-171, 2010.
  • Liu Y, Bian L, Meng Y, Wang H, Zhang S, Yang Y, Shao X, Wang B. “Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis”. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 144-156, 2012.
  • Drăgut L, Csillik O, Eisank C, Tiede D. “Automated parameterisation for multi-scale image segmentation on multiple layers”. ISPRS Journal of Photogrammetry and Remote Sensing, 26(4), 119-127, 2010.
  • D’Oleire-Oltmanns S, Tiede D. “Application of the estimation of scale parameter 2 (ESP-2) tool for the identification of scale levels for distinct target objects”. South‐Eastern European Journal of Earth Observation and Geomatics, 3(2), 597-584, 2014.
  • O’Connell J, Bradter U, Benton T. “Wide-area mapping of small-scale features in agricultural landscapes using airborne remote sensing”. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 165-177, 2015.
  • Drăgut L, Tiede D, Levick SR. “ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data”. International Journal of Geographical Information Science, 24(6), 859-871, 2014.
  • Kavzoglu T, Yıldız M. “Parameter-Based performance analysis of object-based image analysis using aerial and QuickBird-2 images”. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 11(7), 31-37, 2014.
  • Mather P. Computer Processing of Remotely-Sensed Images: An Introduction. 3rd ed. New York, USA, Wiley, 2004.
  • Cohen J. “A coefficient of agreement for nominal scales”. Educational and Psychological Measurement, 20(1), 37-46, 1960.

Object-based crop pattern detection from IKONOS satellite images in agricultural areas

Year 2019, Volume: 25 Issue: 5, 603 - 614, 21.10.2019

Abstract

Nowadays,
with the development of remote sensing technologies and image processing
methods, satellite images have become frequently preferred in studies to
determine the crop pattern in agricultural areas. In this study, it is aimed to
detection the crop pattern in agricultural areas with high accuracy by using
object-based classification technique from high spatial resolution IKONOS
satellite images. The study area is located on the South-west of the Karacabey
district of the Bursa province in the Marmara Region and covers an area of
nearly 9×9 km2. Tomato, corn, pepper, wheat, rice and sugar beet are
the main products grown in the region. In this study, the IKONOS satellite
image is segmented using multi-resolution segmentation technique. The most
appropriate value for the scale parameter, which is the most important
parameter in the segmentation process, has been determined by ESP-2 (Estimation
of Scale Parameter) software. Various combinations have been tried for shape
and compactness parameters in order to find the optimal segmentation
parameters. In order to increase classification accuracy, normalized difference
vegetation index (NDVI) and GLCM texture measurement methods have been used,
including homogeneity, contrast, dissimilarity, mean, variance, and entropy.
Using the data set from consist 29 bands, the image classification process have
been performed using the object-based nearest neighbor classification technique
in the eCognition software. The obtained classification results have been
tested on parcel basis using 2212 ground truth data. The overall accuracy of
the classification has been calculated as 87.5%. The results show that the high
spatial resolution IKONOS satellite image can be used to detection high
accuracy with object-based classification of agricultural crop pattern.

References

  • Shanahan J, Schepers J, Francis D, Varvel G, Wilhelm W, Tringe J, Major D. “Use of remote-sensing imagery to estimate corn grain yield”. Agronomy Journal, 93(3), 583-589, 2011.
  • Conrad C, Fritsch S, Zeidler J, Rücker G, Dech S. “Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data”. Remote Sensing, 2(4), 1035-1056, 2010.
  • Antunes A, Lingnau C, Centeno J. “Object oriented analysis and semantic network for high resolution image classification”. Anais XI SBSR, Belo Horizonte, Brazil, 05-10 April 2003.
  • Blaschke T. “Object based image analysis for remote sensing”. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16, 2010.
  • Lu D, Weng Q. “A survey of image classification methods and techniques for improving classification performance”. International Journal of Remote Sensing, 28(5), 823-870, 2007.
  • Mialhea F, Gunnell Y, Ignacio J, Delbart N, Ogania J, Henry S. “Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines”. International Journal of Applied Earth Observation and Geoinformation, 36, 69-82, 2015.
  • Kim M, Madden M, Warner T. Estimation of Optimal Image Object Size for the Segmentation of Forest Stands with Multispectral IKONOS Imagery. Editors: Blaschke T, Lang S, Hay G. Object-Based Image Analysis, 291-307, Berlin, Heidelberg, Springer-Verlag, 2008.
  • Bock M, Xofis P, Mitchley J, Rossner G, Wissen M. “Object-oriented methods for habitat mapping at multiple scales– Case studies from Northern Germany and Wye Downs, UK”. Journal for Nature Conservation, 13(2), 75-89, 2005.
  • Yu Q, Gong P, Clinton N, Biging, G, Kelly M. “Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery”. Photogrammetric Engineering and Remote Sensing, 72(7), 799-811, 2006.
  • Türker M, Özdarıcı A. “Field-based crop classification using SPOT 4, SPOT 5, IKONOS and QuickBird imagery for agricultural areas: a comparison study”. International Journal of Remote Sensing, 32(24), 9735-9768, 2011.
  • Pena-Barragan JM, Ngugi MK, Plant RE, Six J. “Object-based crop identification using multiple vegetation indices, textural features and crop phenology”. Remote Sensing of Environment, 115(6), 1301-1306, 2011.
  • Koutsias N, Mallinis GG, Pleniou M, Voukelatou I, Paschali T, Dimopoulos P. “Object-based classification using a synergy of high spatial (IKONOS) and high spectral (ASTER) satellite data in a rural NATURA 2000 deltaic area”. Proceedings of the 2nd International Conference on Space Technology, Athens, Greece, 15-17 September 2011.
  • Algancı U, Sertel, E, Özdogan M, Örmeci C. “Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in Southeastern Turkey”. Photogrammetric Engineering and Remote Sensing, 79(11), 1053-1065, 2013.
  • Li M, Ma L, Blaschke T, Cheng L, Tiede D. “A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments”. International Journal of Applied Earth Observation and Geoinformation, 49, 87-98, 2016.
  • Singha M, Wu B, Zhang M. “An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India”. Remote Sensing, 8(6), 479, 2016.
  • Zhang H, Li Q, Liu J, Du X, Dong T, McNairn H, Shang J. “Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier”. Geocarto International, 33(10), 1-19, 2017.
  • Haralick RM, Shanmugam K, Dinstein I. “Textural features for image classification”. IEEE Transactions on Systems, 3(6), 610-621, 1973.
  • Smith, A. “Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm”. Journal of Spatial Science, 55(1), 69-79, 2010.
  • Baatz M, Schape A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Editors: Strobl J, Blaschke T, Griesebner G. Angewandte Geographische Informations-Verarbeitung XII, 12-23, Karlsruhe, Germany, Wichmann, 2000.
  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. “Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information”. ISPRS Journal of Photogrammetry and Remote Sensing, 58 (3-4), 239-258, 2004.
  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q. “Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery”. Remote Sensing of Environment, 115(5), 1145-1161, 2011.
  • Kim M, Warner TA, Madden M, Atkinson DS. “Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects”. International Journal of Remote Sensing, 32(10), 2828-2850, 2011.
  • Smith GM, Morton RW. “Real world objects in GEOBIA through the exploitation of existing digital cartography and image segmentation”. Photogrammetric Engineering and Remote Sensing, 76(2), 163-171, 2010.
  • Liu Y, Bian L, Meng Y, Wang H, Zhang S, Yang Y, Shao X, Wang B. “Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis”. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 144-156, 2012.
  • Drăgut L, Csillik O, Eisank C, Tiede D. “Automated parameterisation for multi-scale image segmentation on multiple layers”. ISPRS Journal of Photogrammetry and Remote Sensing, 26(4), 119-127, 2010.
  • D’Oleire-Oltmanns S, Tiede D. “Application of the estimation of scale parameter 2 (ESP-2) tool for the identification of scale levels for distinct target objects”. South‐Eastern European Journal of Earth Observation and Geomatics, 3(2), 597-584, 2014.
  • O’Connell J, Bradter U, Benton T. “Wide-area mapping of small-scale features in agricultural landscapes using airborne remote sensing”. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 165-177, 2015.
  • Drăgut L, Tiede D, Levick SR. “ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data”. International Journal of Geographical Information Science, 24(6), 859-871, 2014.
  • Kavzoglu T, Yıldız M. “Parameter-Based performance analysis of object-based image analysis using aerial and QuickBird-2 images”. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 11(7), 31-37, 2014.
  • Mather P. Computer Processing of Remotely-Sensed Images: An Introduction. 3rd ed. New York, USA, Wiley, 2004.
  • Cohen J. “A coefficient of agreement for nominal scales”. Educational and Psychological Measurement, 20(1), 37-46, 1960.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Beste Tavus This is me

Kamil Karataş

Mustafa Türker

Publication Date October 21, 2019
Published in Issue Year 2019 Volume: 25 Issue: 5

Cite

APA Tavus, B., Karataş, K., & Türker, M. (2019). Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(5), 603-614.
AMA Tavus B, Karataş K, Türker M. Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2019;25(5):603-614.
Chicago Tavus, Beste, Kamil Karataş, and Mustafa Türker. “Tarımsal Alanlarda yüksek çözünürlüklü IKONOS Uydu görüntüsünden Nesne-Tabanlı ürün Deseni Tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no. 5 (October 2019): 603-14.
EndNote Tavus B, Karataş K, Türker M (October 1, 2019) Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 5 603–614.
IEEE B. Tavus, K. Karataş, and M. Türker, “Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 5, pp. 603–614, 2019.
ISNAD Tavus, Beste et al. “Tarımsal Alanlarda yüksek çözünürlüklü IKONOS Uydu görüntüsünden Nesne-Tabanlı ürün Deseni Tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/5 (October 2019), 603-614.
JAMA Tavus B, Karataş K, Türker M. Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:603–614.
MLA Tavus, Beste et al. “Tarımsal Alanlarda yüksek çözünürlüklü IKONOS Uydu görüntüsünden Nesne-Tabanlı ürün Deseni Tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 5, 2019, pp. 603-14.
Vancouver Tavus B, Karataş K, Türker M. Tarımsal alanlarda yüksek çözünürlüklü IKONOS uydu görüntüsünden nesne-tabanlı ürün deseni tespiti. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(5):603-14.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif