Research Article
BibTex RIS Cite

Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı

Year 2021, Volume: 27 Issue: 6, 683 - 695, 30.11.2021

Abstract

Bu makalede, inşaat/yıkım (𝐶&𝐷) atığı türlerinden biri olan asfalt atık malzemesinin (𝑅𝐴𝑃) yol altı drenaj sistemlerinde filtre malzemesi olarak kullanılabilirliğinin tespiti için uzun süreli filtrasyon performansı incelenmiştir. Geri kazanılmış asfalt ve geotekstilden oluşan drenaj sisteminin zamana bağlı permeabilite davranışının belirlenmesi için yeniden tasarlanarak, geliştirilen ve imalatı yaptırılan 𝐴𝑆𝑇𝑀 𝐷 5101 deney düzeneğinde uzun süreli filtrasyon deneyleri (𝐿𝐹𝑇) yapılmıştır. Geliştirilmiş 𝐴𝑆𝑇𝑀 𝐷 5101 deneyi ile geri kazanılmış asfalt-geotekstil sisteminde oluşabilecek potansiyel tıkanma mekanizmaları, zaman ve akış yönüne bağlı olarak malzeme dane çapı dağılımındaki değişimler belirlenmiştir. Bu çalışmada, uzun süreli filtrasyon deneyleri ile özellikle yol altı drenaj sistemlerinin teşkilinde kullanılacak olan doğal filtre malzemeleri yerine geri kazanılmış asfalt malzemenin kullanılabileceğini göstermek amaçlanmaktadır. Geri kazanılmış asfalt malzemenin tekrardan kullanımı ile depolama sorununun ortadan kalkmasına, çevre kirliliğinin önlenmesine ve geoteknik mühendisliği açısından sürdürülebilir malzeme yönetimine (𝑆𝑀𝑀) katkıda bulunulmuş olunacaktır. Makalede agrega ve geotekstilden oluşan drenaj sisteminin uzun süreli filtrasyon davranışı, geliştirilmiş 𝐴𝑆𝑇𝑀 𝐷 5101 deney sisteminde incelenmiştir. Değişik hidrolik eğimler altında gerçekleştirilen uzun süreli filtrasyon deneylerinde agrega-geotekstil sisteminin tıkanma performansını tanımlayacak olan hidrolik eğim oranı (𝐺𝑅) ve geçirimlilik oranı (𝐾𝑅) değerleri belirlenmiştir. Çalışmada agrega olarak geri kazanılmış asfalt ve bu malzemenin filtrasyon performansının karşılaştırılması amacı ile doğal agrega (𝑁𝐴) kullanılmıştır. Geotekstil olarak tıkanma açısından en olumsuz durumu sağlayacak gözenek açıklığına sahip olan bir örgüsüz geotekstil tercih edilmiştir. Geliştirilmiş 𝐴𝑆𝑇𝑀 𝐷 5101 deney sistemi kullanılarak yapılan deneyler sonucunda, geri kazanılmış asfalt malzemenin performansının doğal agrega sonuçları ile yeterli seviyede karşılaştırılabilir olduğu anlaşılmıştır. Buna ek olarak, içeriğindeki bitüm malzeme oranı kontrol edildiği takdirde filtrasyon özellikleri bakımından yol altı drenaj sistemlerinde agrega olarak kullanılabilineceği düşünülmektedir. Böylece 𝑅𝐴𝑃’nın yeniden kullanımı ile sürdürülebilir malzeme yönetimine ve çevrenin korunmasına katkıda bulunulmuş olunacaktır.

References

  • [1] Environmental Protection Agency. “Construction and Demolition Debris Management in the United States, 2015”. US. Environmental Protection Agency, Office of Resource Conservation and Recovery, US, 2020.
  • [2] Buzkan C, Erman O. “Yapısal atıkların geri dönüşüm sorunu ve Türkiye’deki durumun mevzuat bakımından değerlendirilmesi”. Doğal Afetler ve Çevre Dergisi, 6(1), 76-89, 2020.
  • [3] Kabirifar K, Mojtahedi M, Wang C, Tam VWX. “Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review”. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2020.121265
  • [4] Gonzalez R, Chini A. “Using the circular economy to manage construction waste”. Associated Schools of Construction Proceedings of the 56th Annual International Conference, Liverpool, United Kingdom, 15-18 April 2020.
  • [5] Kisku N, Rajhans P, Panda SK, Nayak S, Pandey V. “Development of durable concrete from C&D waste by adopting identical mortar volume method in conjunction with two-stage mixing procedure”. Construction and Buildin Materials, 2020. https://doi.org/10.1016/j.conbuildmat.2020.119361
  • [6] Aslam MS, Huang B, Cui L. “Review of construction and demolition waste management in China and USA”. Journal of Environmental Management, 2020. https://doi.org/10.1016/j.jenvman.2020.110445
  • [7] Wang QZ, Zhao YF, Tseng ML, Lim MK. “Performance analysis and reuse of construction and demolition waste stone using fractal and gradation theory”. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2020.122208
  • [8] Guerra BC, Leite F, Faust KM. “4D-BIM to enhance construction waste reuse and recycle planning: Case studies on concrete and drywall waste streams”. Waste Management, 116, 79-90, 2020.
  • [9] Mehrjardi GT, Azizi A, Haji-Azizi A, Asdollafardi G. “Evaluating and improving the construction and demolition waste technical properties to use in road construction”. Transportation Geotechnics, 2020. htts://doi.org/10.1016/j.trgeo.2020.100349
  • [10] Li L, Qin L, Xiao H, Hu Z, Xu G, Ma Q. “The triaxial test of construction and demolition (C&D) materials with different particle sizes and sand contents”. European Journal of Environmental and Civil Engineering, 2020. https://doi.org/10.1080/19648189.2020.1820908
  • [11] Sahu D, Nirmal P, Sahu KK, Sahu TK, Dewangan B, Kuldeep S, Urvasha B. “Study of surface and sub surface highway drainage system”. International Journal of Innovations in Engineering and Science, 4(3), 945-949, 2016.
  • [12] Ok B, Sarici T, Talaslioglu T, Yildiz A. “Geotechnical properties of recycled construction and demolition materials for filling applications”. Transportation Geotechnics, 2020. https://doi.org/10.1016/j.trgeo.2020.100380
  • [13] Townsend TG, Ingwersen WW, Niblick B, Jain P, Wally J. “CDDPath: A method for quantifying the loss and recovery of construction and demolition debris in the United States”. Waste Management, 84, 302-309, 2019.
  • [14] Mahedi M, Cetin B, Dayioglu AY. “Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils”. Journal of Environmental Management, 2019. https://doi.org/10.1016/j.jenvman.2019.109720
  • [15] Dayioglu AY, Aydilek AH, Cimen O, Cimen M. “Trace metal leaching from steel slag used in structural fills”. Journal of Geotechnical and Geoenvironmental Engineering, 2018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980
  • [16] U.S. Environmental Protection Agency. “Historical Recycled Commodity Values”. Office of Resource Conservation and Recovery, USA, 2020.
  • [17] T.C. Çevre ve Şehircilik Bakanlığı. “Çevre Kanunu”. https://www.mevzuat.gov.tr/MevzuatMetin/1.5.2872.pd f (19.10.2020).
  • [18] American Society for Testing and Materials. “Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems”. USA, ASTM Standard D5101-12, 2012.
  • [19] Yildirim IZ, Prezzi M. “Chemical, mineralogical, and morphological properties of steel slag”. Advances in Civil Engineering, 2011, 1-13, 2011.
  • [20] Hoy M, Horpibulsuk S, Rachan R, Chinkulkijniwat A, Arulrajah A. “Recycled asphalt pavement-fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations”. Science of the Total Environment, 573, 19-26, 2016.
  • [21] Arulrajah A, Piratheepan J, Ali MMY, Bo MW. “Geotechnical properties of recycled concrete aggregate in pavement sub-base applications”. Geotechnical Testing Journal, 35(5),743-751, 2012.
  • [22] Cardoso R, Silva RV, Brito de J, Dhir R. “Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review”. Waste Management, 49, 131-145, 2016.
  • [23] Karadağ H, Fırat S, Işık NS. “Çelikhane Cürufunun Yol Temel ve Alttemel Malzemesi Olarak Kullanılması”. Journal of Polytechnic, 23(3), 799-812, 2020.
  • [24] Amarasiri S, Muhunthan B. “Pore Structure Models to Predict Hydraulic Conductivity of Recycled Asphalt Pavements”. Journal of Materials in Civil Engineering, 31(8), 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002778
  • [25] Mijic Z, Dayioglu AY, Hatipoglu M, Aydilek AH. “Hydraulic and environmental impacts of using recycled asphalt pavement on highway shoulders” Construction and Building Materials, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117226
  • [26] Çakır Ö, Dilbas H. “A comparative analysis of elasticity modulus of recycled aggregate concrete with silica fume” Pamukkale University Journal of Engineering Sciences, 24(6), 1069-1078, 2018.
  • [27] Faure YH, Baudoin A, Pierson P, Plé O. “A contribution for predicting geotextile clogging during filtration of suspended solids” Geotextiles and Geomembranes, 24(1), 11-20, 2006.
  • [28] Türk Standartları Enstitüsü. “İnşaat Mühendisliği İşleri ve Yol Yapımında Kullanılan Bağlayıcısız ve Hidrolik Bağlayıcılı Malzemeler İçin Agregalar”. Türk Standartları Enstitüsü, Ankara, Türkiye, TS EN 13242 + A1, 2009.
  • [29] Environmental Protection Agency. “A Study of the Use of Recycled Paving Material”. U.S. Department of Transportation, Federal Highway Administarion, USA, 1993.
  • [30] Korner RM. Geotextiles from Design to Application. Duxford, United States, Elsevier, 2016.
  • [31] Korner RM. Geosynthetics in Filtration, Drainage and Erosion Control. Pennsylvania, USA, Elsevier, 1992.
  • [32] Fischer GR, Maré AD, and Holtz RD. “Influence of Procedural Variables on the Gradient Ratio Test”. Geotechnical Testing Journal, 22(1), 22-31, 1999.
  • [33] Holtz RD. Geosynthetics R&D-The ‘Early’ Days (1960s to Circa 1985). Holtz University of Washington, Seattle, WA, USA, 1985.
  • [34] Kutay ME, Aydilek AH. “Filtration performance of twolayer geotextile systems”. Geotechnical Testing Journal, 28(1), 79-91, 2005.
  • [35] Aydilek AH, Edil TB. “Filtration performance of woven geotextiles with wastewater treatment sludge”. Geosynthetics International, 9(1), 41-69, 2002.
  • [36] Soleimanbeigi A, Edil TB. “Compressibility of recycled materials for use as highway embankment fill.” Journal of Geotechnical and Geoenvironmental Engineering, 2015. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001285
  • [37] Abbaspour A, Tanyu BF, Aydilek AH, Dayioglu AY. “Methodology to evaluate hydraulic compatibility o geotextile and RCA in underdrain systems”. Geosynthetics International, 25(1), 67-84, 2018.
  • [38] Ryoo SC, Aydilek AH. “Hydraulic compatibility of geotextile-compost systems in landfill covers”. Geosynthetics International, 27(1), 48-64, 2020.
  • [39] Bilgen G, Houlihan M, Ryoo S, Wang Y, Aydilek AH. “Hydraulic and environmental compatibility of RCA with filters and subgrades in highways”. Environmental Geotechnics, 2020. https://doi.org/10.1680/jenge.20.00040
  • [40] T.C. Ulaştırma ve Altyapı Bakanlığı “Karayolu Teknik Şartnamesi”. Karayolları Genel Müdürlüğü, Ankara, Türkiye, 2013.
  • [41] American Society for Testing and Materials. “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate”. Pensilvanya, United States, ASTM C 136-06, 2006.
  • [42] American Society for Testing and Materials. “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)”. Pensilvanya, United States, ASTM D5521-05, 2006.
  • [43] American Society for Testing and Materials. “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils”. Pensilvanya, United States, ASTM D 4318- 10, 2005.
  • [44] American Society for Testing and Materials. “Test Method for Laboratory Compaction Characteristics of Soils Using Standard Effort (12.400 ft-lbf/ft 3 (600 kN-m / m 3))”. Pensilvanya, United States, ASTM D698-12, 2012.
  • [45] American Society for Testing and Materials. “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000ft-lbf/ft3 (2,700 kNm/m3))”. Pensilvanya, United States, ASTM D1557, 2012.
  • [46] American Society for Testing and Materials. “Standard Test Method for California Bearing Ratio test of Lab Compacted Soil”. Pensilvanya, United States, ASTM D1883-16, 2016.
  • [47] Aydilek AH, Oguz SH, Edil TB. “Digital image analysis to determine pore opening size distribution of nonwoven geotextiles”. Journal of Computing in Civil Engineering, 16(4), 280-290, 2002.
  • [48] Joseph E, Fluet J. Geotextile Testing and the Design Engineer. Los Angles, USA, ASTM, 1985.
  • [49] Sabiri NE, Caylet A, Montillet A, Coq L, Durkheim Y. “Performance of nonwoven geotextiles on soil drainage and filtration”. European Journal of Environmental and Civil Engineering, 24(5), 670-688, 2020.
  • [50] Bhatia SK, Suits D. “Recent Developments in Geotextile Filters and Prefabricated Drainage Geocomposites: ASTM Special Technical Publication N0. 1281”. Industrial Fabrics Association International, 1996.
  • [51] Dolez PI, Blond E. “Evaluation of geotextile performance for the filtration of fine-grained tailings”. Geotechnical Frontiers 2017, Orlando, Florid, USA, 12-15 March 2017.
  • [52] Abbaspour A, Tanyu BF, Cetin B. “Impact of aging on leaching characteristics of recycled concrete aggregate”. Environmental Science and Pollution Research, 23(20), 20835-20852, 2016.

Long term filtration performance of recycled asphalt pavement material

Year 2021, Volume: 27 Issue: 6, 683 - 695, 30.11.2021

Abstract

In this article, the long-term filtration performance of recycled asphalt pavement material (𝑅𝐴𝑃), one of the types of construction/demolition (𝐶&𝐷) waste, is investigated when used as a filter material in highway drainage systems. Long-term filtration tests (𝐿𝐹𝑇) were carried out in the 𝐴𝑆𝑇𝑀 𝐷 5101 experimental setup, which was redesigned and manufactured in order to determine the permeability behavior of the drainage system consisting of recycled asphalt and geotextile. With the usage of modified 𝐴𝑆𝑇𝑀 𝐷 5101 test setup, potential clogging mechanisms that may occur, and the change in grain size distribution of the material with respect to time and flow direction were determined. The long-term filtration test program aims to prove that recycled asphalt material could be used instead of natural filter materials particularly in the construction of highway drainage systems. The recovery of this material by reusing it will, eliminate the storage problem, prevent environmental pollution and make a contribution in terms of sustainable material management (𝑆𝑀𝑀) in geotechnical engineering applications. In the study, the long-term filtration behavior of the drainage system consisting of aggregate and geotextile was investigated in the modified 𝐴𝑆𝑇𝑀 𝐷 5101 test system. The gradient ratio (𝐺𝑅) and the permeability ratio (𝐾𝑅) were determined in the long-term filtration experiments performed under different hydraulic gradients, which define the clogging performance of the aggregate/geotextile system. Recycled asphalt aggregate and natural aggregate (𝑁𝐴) were used to evaluate the filtration performance of aggregates. A non-woven geotextile material with a pore opening to represent the worst conditions in terms of clogging was selected considering its hydraulic and physical properties. The results of the long term filtration tests indicate that the performance of the recycled asphalt material is comparable to the natural aggregate. Additionaly with controlled bitumen content, it can be used as an aggregate material in highway drainage systems in terms of filtration properties, thus contributing to sustainable material management. Therefore, with the re-use of 𝑅𝐴𝑃 as a filter material in highway drainage systems a contribution to the protection of environment could be achieved.

References

  • [1] Environmental Protection Agency. “Construction and Demolition Debris Management in the United States, 2015”. US. Environmental Protection Agency, Office of Resource Conservation and Recovery, US, 2020.
  • [2] Buzkan C, Erman O. “Yapısal atıkların geri dönüşüm sorunu ve Türkiye’deki durumun mevzuat bakımından değerlendirilmesi”. Doğal Afetler ve Çevre Dergisi, 6(1), 76-89, 2020.
  • [3] Kabirifar K, Mojtahedi M, Wang C, Tam VWX. “Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review”. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2020.121265
  • [4] Gonzalez R, Chini A. “Using the circular economy to manage construction waste”. Associated Schools of Construction Proceedings of the 56th Annual International Conference, Liverpool, United Kingdom, 15-18 April 2020.
  • [5] Kisku N, Rajhans P, Panda SK, Nayak S, Pandey V. “Development of durable concrete from C&D waste by adopting identical mortar volume method in conjunction with two-stage mixing procedure”. Construction and Buildin Materials, 2020. https://doi.org/10.1016/j.conbuildmat.2020.119361
  • [6] Aslam MS, Huang B, Cui L. “Review of construction and demolition waste management in China and USA”. Journal of Environmental Management, 2020. https://doi.org/10.1016/j.jenvman.2020.110445
  • [7] Wang QZ, Zhao YF, Tseng ML, Lim MK. “Performance analysis and reuse of construction and demolition waste stone using fractal and gradation theory”. Journal of Cleaner Production, 2020. https://doi.org/10.1016/j.jclepro.2020.122208
  • [8] Guerra BC, Leite F, Faust KM. “4D-BIM to enhance construction waste reuse and recycle planning: Case studies on concrete and drywall waste streams”. Waste Management, 116, 79-90, 2020.
  • [9] Mehrjardi GT, Azizi A, Haji-Azizi A, Asdollafardi G. “Evaluating and improving the construction and demolition waste technical properties to use in road construction”. Transportation Geotechnics, 2020. htts://doi.org/10.1016/j.trgeo.2020.100349
  • [10] Li L, Qin L, Xiao H, Hu Z, Xu G, Ma Q. “The triaxial test of construction and demolition (C&D) materials with different particle sizes and sand contents”. European Journal of Environmental and Civil Engineering, 2020. https://doi.org/10.1080/19648189.2020.1820908
  • [11] Sahu D, Nirmal P, Sahu KK, Sahu TK, Dewangan B, Kuldeep S, Urvasha B. “Study of surface and sub surface highway drainage system”. International Journal of Innovations in Engineering and Science, 4(3), 945-949, 2016.
  • [12] Ok B, Sarici T, Talaslioglu T, Yildiz A. “Geotechnical properties of recycled construction and demolition materials for filling applications”. Transportation Geotechnics, 2020. https://doi.org/10.1016/j.trgeo.2020.100380
  • [13] Townsend TG, Ingwersen WW, Niblick B, Jain P, Wally J. “CDDPath: A method for quantifying the loss and recovery of construction and demolition debris in the United States”. Waste Management, 84, 302-309, 2019.
  • [14] Mahedi M, Cetin B, Dayioglu AY. “Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils”. Journal of Environmental Management, 2019. https://doi.org/10.1016/j.jenvman.2019.109720
  • [15] Dayioglu AY, Aydilek AH, Cimen O, Cimen M. “Trace metal leaching from steel slag used in structural fills”. Journal of Geotechnical and Geoenvironmental Engineering, 2018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980
  • [16] U.S. Environmental Protection Agency. “Historical Recycled Commodity Values”. Office of Resource Conservation and Recovery, USA, 2020.
  • [17] T.C. Çevre ve Şehircilik Bakanlığı. “Çevre Kanunu”. https://www.mevzuat.gov.tr/MevzuatMetin/1.5.2872.pd f (19.10.2020).
  • [18] American Society for Testing and Materials. “Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems”. USA, ASTM Standard D5101-12, 2012.
  • [19] Yildirim IZ, Prezzi M. “Chemical, mineralogical, and morphological properties of steel slag”. Advances in Civil Engineering, 2011, 1-13, 2011.
  • [20] Hoy M, Horpibulsuk S, Rachan R, Chinkulkijniwat A, Arulrajah A. “Recycled asphalt pavement-fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations”. Science of the Total Environment, 573, 19-26, 2016.
  • [21] Arulrajah A, Piratheepan J, Ali MMY, Bo MW. “Geotechnical properties of recycled concrete aggregate in pavement sub-base applications”. Geotechnical Testing Journal, 35(5),743-751, 2012.
  • [22] Cardoso R, Silva RV, Brito de J, Dhir R. “Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review”. Waste Management, 49, 131-145, 2016.
  • [23] Karadağ H, Fırat S, Işık NS. “Çelikhane Cürufunun Yol Temel ve Alttemel Malzemesi Olarak Kullanılması”. Journal of Polytechnic, 23(3), 799-812, 2020.
  • [24] Amarasiri S, Muhunthan B. “Pore Structure Models to Predict Hydraulic Conductivity of Recycled Asphalt Pavements”. Journal of Materials in Civil Engineering, 31(8), 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002778
  • [25] Mijic Z, Dayioglu AY, Hatipoglu M, Aydilek AH. “Hydraulic and environmental impacts of using recycled asphalt pavement on highway shoulders” Construction and Building Materials, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117226
  • [26] Çakır Ö, Dilbas H. “A comparative analysis of elasticity modulus of recycled aggregate concrete with silica fume” Pamukkale University Journal of Engineering Sciences, 24(6), 1069-1078, 2018.
  • [27] Faure YH, Baudoin A, Pierson P, Plé O. “A contribution for predicting geotextile clogging during filtration of suspended solids” Geotextiles and Geomembranes, 24(1), 11-20, 2006.
  • [28] Türk Standartları Enstitüsü. “İnşaat Mühendisliği İşleri ve Yol Yapımında Kullanılan Bağlayıcısız ve Hidrolik Bağlayıcılı Malzemeler İçin Agregalar”. Türk Standartları Enstitüsü, Ankara, Türkiye, TS EN 13242 + A1, 2009.
  • [29] Environmental Protection Agency. “A Study of the Use of Recycled Paving Material”. U.S. Department of Transportation, Federal Highway Administarion, USA, 1993.
  • [30] Korner RM. Geotextiles from Design to Application. Duxford, United States, Elsevier, 2016.
  • [31] Korner RM. Geosynthetics in Filtration, Drainage and Erosion Control. Pennsylvania, USA, Elsevier, 1992.
  • [32] Fischer GR, Maré AD, and Holtz RD. “Influence of Procedural Variables on the Gradient Ratio Test”. Geotechnical Testing Journal, 22(1), 22-31, 1999.
  • [33] Holtz RD. Geosynthetics R&D-The ‘Early’ Days (1960s to Circa 1985). Holtz University of Washington, Seattle, WA, USA, 1985.
  • [34] Kutay ME, Aydilek AH. “Filtration performance of twolayer geotextile systems”. Geotechnical Testing Journal, 28(1), 79-91, 2005.
  • [35] Aydilek AH, Edil TB. “Filtration performance of woven geotextiles with wastewater treatment sludge”. Geosynthetics International, 9(1), 41-69, 2002.
  • [36] Soleimanbeigi A, Edil TB. “Compressibility of recycled materials for use as highway embankment fill.” Journal of Geotechnical and Geoenvironmental Engineering, 2015. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001285
  • [37] Abbaspour A, Tanyu BF, Aydilek AH, Dayioglu AY. “Methodology to evaluate hydraulic compatibility o geotextile and RCA in underdrain systems”. Geosynthetics International, 25(1), 67-84, 2018.
  • [38] Ryoo SC, Aydilek AH. “Hydraulic compatibility of geotextile-compost systems in landfill covers”. Geosynthetics International, 27(1), 48-64, 2020.
  • [39] Bilgen G, Houlihan M, Ryoo S, Wang Y, Aydilek AH. “Hydraulic and environmental compatibility of RCA with filters and subgrades in highways”. Environmental Geotechnics, 2020. https://doi.org/10.1680/jenge.20.00040
  • [40] T.C. Ulaştırma ve Altyapı Bakanlığı “Karayolu Teknik Şartnamesi”. Karayolları Genel Müdürlüğü, Ankara, Türkiye, 2013.
  • [41] American Society for Testing and Materials. “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate”. Pensilvanya, United States, ASTM C 136-06, 2006.
  • [42] American Society for Testing and Materials. “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)”. Pensilvanya, United States, ASTM D5521-05, 2006.
  • [43] American Society for Testing and Materials. “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils”. Pensilvanya, United States, ASTM D 4318- 10, 2005.
  • [44] American Society for Testing and Materials. “Test Method for Laboratory Compaction Characteristics of Soils Using Standard Effort (12.400 ft-lbf/ft 3 (600 kN-m / m 3))”. Pensilvanya, United States, ASTM D698-12, 2012.
  • [45] American Society for Testing and Materials. “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000ft-lbf/ft3 (2,700 kNm/m3))”. Pensilvanya, United States, ASTM D1557, 2012.
  • [46] American Society for Testing and Materials. “Standard Test Method for California Bearing Ratio test of Lab Compacted Soil”. Pensilvanya, United States, ASTM D1883-16, 2016.
  • [47] Aydilek AH, Oguz SH, Edil TB. “Digital image analysis to determine pore opening size distribution of nonwoven geotextiles”. Journal of Computing in Civil Engineering, 16(4), 280-290, 2002.
  • [48] Joseph E, Fluet J. Geotextile Testing and the Design Engineer. Los Angles, USA, ASTM, 1985.
  • [49] Sabiri NE, Caylet A, Montillet A, Coq L, Durkheim Y. “Performance of nonwoven geotextiles on soil drainage and filtration”. European Journal of Environmental and Civil Engineering, 24(5), 670-688, 2020.
  • [50] Bhatia SK, Suits D. “Recent Developments in Geotextile Filters and Prefabricated Drainage Geocomposites: ASTM Special Technical Publication N0. 1281”. Industrial Fabrics Association International, 1996.
  • [51] Dolez PI, Blond E. “Evaluation of geotextile performance for the filtration of fine-grained tailings”. Geotechnical Frontiers 2017, Orlando, Florid, USA, 12-15 March 2017.
  • [52] Abbaspour A, Tanyu BF, Cetin B. “Impact of aging on leaching characteristics of recycled concrete aggregate”. Environmental Science and Pollution Research, 23(20), 20835-20852, 2016.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Authors

Ayşegül Bayın Sarıahmetoğlu

Recep İyisan This is me

Aslı Yalçın Dayıoğlu

Mustafa Hatipoğlu

Publication Date November 30, 2021
Published in Issue Year 2021 Volume: 27 Issue: 6

Cite

APA Bayın Sarıahmetoğlu, A., İyisan, R., Yalçın Dayıoğlu, A., Hatipoğlu, M. (2021). Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(6), 683-695.
AMA Bayın Sarıahmetoğlu A, İyisan R, Yalçın Dayıoğlu A, Hatipoğlu M. Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2021;27(6):683-695.
Chicago Bayın Sarıahmetoğlu, Ayşegül, Recep İyisan, Aslı Yalçın Dayıoğlu, and Mustafa Hatipoğlu. “Geri kazanılmış Asfalt Malzemenin Uzun süreli Filtrasyon Performansı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, no. 6 (November 2021): 683-95.
EndNote Bayın Sarıahmetoğlu A, İyisan R, Yalçın Dayıoğlu A, Hatipoğlu M (November 1, 2021) Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 6 683–695.
IEEE A. Bayın Sarıahmetoğlu, R. İyisan, A. Yalçın Dayıoğlu, and M. Hatipoğlu, “Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 6, pp. 683–695, 2021.
ISNAD Bayın Sarıahmetoğlu, Ayşegül et al. “Geri kazanılmış Asfalt Malzemenin Uzun süreli Filtrasyon Performansı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/6 (November 2021), 683-695.
JAMA Bayın Sarıahmetoğlu A, İyisan R, Yalçın Dayıoğlu A, Hatipoğlu M. Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:683–695.
MLA Bayın Sarıahmetoğlu, Ayşegül et al. “Geri kazanılmış Asfalt Malzemenin Uzun süreli Filtrasyon Performansı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 6, 2021, pp. 683-95.
Vancouver Bayın Sarıahmetoğlu A, İyisan R, Yalçın Dayıoğlu A, Hatipoğlu M. Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(6):683-95.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif